PCLNGタンクの杭基礎設計(その2)急速載荷試験による杭の支持力評価について

東北電力株式会社 十木建築部 正会員 〇 宙司 東北電力株式会社 土木建築部 法人会員 金子 直樹

1. はじめに

LNG タンクの設計指針 ¹⁾における杭の支持力算定式 ²⁾で は、軟岩の先端支持力は砂質土より低く評価されている。 一方,現在計画中の LNG タンク設置位置の支持層は軟岩 であるが,砂礫状粒子を主体とする火山砕屑岩であり,そ の性状から砂質土同等の支持力が期待される。このため, 試験杭の鉛直載荷試験により杭の支持力を適切に評価し, 基礎設計の合理化を図ることとした。本報告では、試験概 要及び支持力の評価結果について紹介する。

2. 支持力算定式

先端開放杭(打撃工法)の支持力算定式を以下に示す。軟 岩の先端支持力度は砂質土の約 1/3 と低く評価されている。 基準先端支持力度(kN/m²)

砂質土: 40/D ×(L/D)×N' (≦ 8,000) $\cdots \cdot (1)$ 軟 岩: 12.8/D×(L/D)×N'(≦ 10,000) $\cdots (2)$ 最大周面支持力度(kN/m²)

砂質十:2×N 値 (≤ 100) $\cdots (3)$

(D: 杭径(m), L: 換算根入長(m), N': 支持力算定用 N 値)

3. 急速載荷試験の概要

試験装置を図1に示す。今回実施した急速載荷試験は軟 クッション重錘落下方式であり, 杭頭に設置したクッショ ン上に重錘を落す動的試験である。試験杭の加速度及びひ ずみを計測することで,除荷点法等により動的試験から静 的抵抗成分を求めることができる。 杭と地盤を図2のよう にモデル化すると、試験中の力の釣合いは式(4)のとおりで あり、地盤の抵抗力 Rsoil は式(5)より求められる。

$$F=M \cdot \alpha + Rw + C \cdot v \qquad \cdots (4)$$

$$Rsoil=Rw + Cv = F - M \cdot \alpha \qquad \cdots (5)$$

変位量SとRsoilの関係を図3に示す。変位量最大点(除 荷点)では速度 v=0 となり動的抵抗成分は作用しないため、 式(5)より Rw=Rsoil となり、除荷点の Rsoil が急速載荷試 験における静的抵抗成分の最大値となる。杭頭で計測した 加速度とひずみからは杭全体の静的抵抗成分を求めること ができる。杭先端でも計測を行うことで、杭先端と杭周面 の静的抵抗成分を分離して評価することができる。

図 1 急速載荷試験(重錘落下装置)

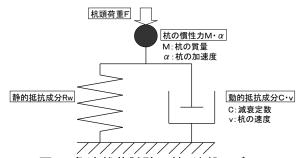


図2 急速載荷試験の杭・地盤モデル

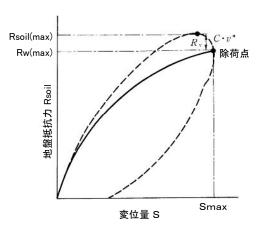


図3 除荷点法による地盤抵抗力

キーワード 試験杭, 急速載荷試験, 軟岩, 支持力

〒980-8550 仙台市青葉区本町 1-7-1 TEL 022-799-1904 FAX 022-262-5851 連絡先

4. 地盤概要及び試験仕様

LNG タンク設置位置の地盤及び試験仕様を図4に示す。支持層は火山礫凝灰岩等からなり, 杭先端付近の平均N値は61である。支持層上には, 層厚約20mで沖積砂層が分布する。

試験杭(鋼管杭,2本)は本杭と同じФ900とし、肉厚は最大 試験荷重に対して杭体が降伏しないよう19mmとした。重錘 質量と落下高さは、目標とする最大静的抵抗成分に動的抵抗 成分やクッション材によるロスを考慮して設定した。ひずみ 計は6断面、加速度計は杭頭及び杭先端に設置した。

5. 急速載荷試験結果

NO.1 試験杭先端の除荷点法による解析結果を図 5 に示す。 各落下高さの除荷点を結ぶことで、杭先端の静的抵抗成分~ 変位曲線を得られる。この結果より NO1 試験杭の先端支持力 は最大値 6,200kN(支持力度 9,746kN/m²)と判断した。

載荷試験結果及び設計用支持力度を表1に示す。先端支持力度は算定式(砂質土)による支持力度の約1.4倍であり,砂質土同等の支持力を有することを確認した。周面支持力度は、砂層で算定式(砂質土)の3.4~3.7倍であり、支持層は算定式(砂質土)を大きく上回った。

6. 設計用支持力度の設定

設計用支持力度は、安全側に試験結果(平均値)の約 80%を採用することとし、先端支持力度は、算定式(砂質土)の上限値である 8,000kN/m² とした。また、支持層の周面支持力度は、算定式(砂質土)を大きく上回ったことから、算定式の上限値の 1.2 倍である 120kN/m² を採用した。

試験杭について,①算定式による支持力,②設計用支持力度より算出した支持力,③載荷試験解析結果の比較を図6に示す。設計支持力は,試験結果に対して約60%,算定式に対しては約1.4~2倍となっている。

7. おわりに

急速載荷試験により、LNG タンク設置位置の支持層(軟岩) の先端支持力度は砂質土として評価できることを確認した。また、周面支持力度も、算定式以上であることが確認され、杭の設計鉛直支持力は、試験結果の約 60%と安全側に評価しつつ、算定式の 1.4~2.0 倍として設定することができた。今後は、杭本数の大幅な低減等、基礎設計の合理化を図っていく予定である。

参考文献

1) (社)日本ガス協会: LNG 地上式貯槽指針, pp.254~258(2002)

2)(財)鉄道総合技術研究所:鉄道構造物等設計標準·同解説, pp.222~232(2000)

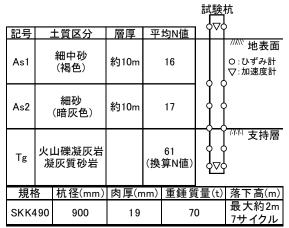


図4 地盤と試験仕様

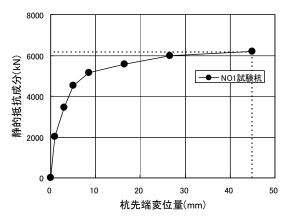


図 5 杭先端の静的抵抗成分と変位の関係

表 1 載荷試験結果(支持力度:kN/m²)

試験杭NO		NO1	NO2	平均	採用値
先端		9,746	12,115	10,931	8,000
支持力度		(1.2)	(1.5)	(1.4)	
周面 支持力度	砂層	130	76	103	80
	(As1)	(4.6)	(2.1)	(3.4)	
	砂層	125	122	124	90
	(As2)	(3.7)	(3.8)	(3.7)	
	支持層 (Tg)	231	670	451	120

※()は指針の算定式(砂質土)に対する比率

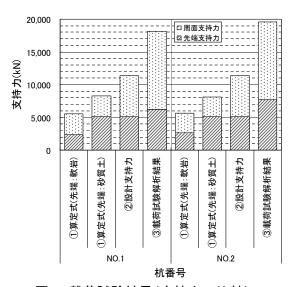


図 6 載荷試験結果(支持力の比較)