表面張力モデルを用いた初期パンケーキアイス形成条件に関する研究

岩手大学 学生会員 ○伊東孝徳,正会員 堺茂樹,正会員 松林由里子

1. はじめに

海洋大循環は熱量を輸送し、地球の気候の支配的 な要因の一つとなっている.原動力はグリーンラン ド沖などの高緯度地域における冷たく密度の大きな 海水の沈み込みで、これらの海域で見られる pancake ice は塩分を排斥しながら成長し、周囲の海

水密度を上げ,海水の沈み込みに寄与していると考 えられる.そのため,pancake iceの生成と成長,そ れに伴う海水の塩分濃度の予測は今後の気候変動を 考える上で重要だが,pancake iceの生成メカニズム や波浪条件の関係に関して未解明な点も多い.

Kitadate ら(2008)は立方体で表した frazil ice モデ ルを用い,波浪条件(周期や振幅)による pancake ice 生成指標を作成し,実験結果との良い一致を得 ている.本研究では, frazil ice のモデル形状を,よ り現実的な形状である円柱に変更し,作成した指標 と実験値との比較を行う.

2. pancake ice 生成条件

波の表面に微小な距離をもって隣り合う2つの frazil ice 粒子(以下,粒子と記す)の運動が,水面の 水粒子運動に追随すると仮定すると,粒子の中心間 距離 L は波動の線形理論を用いて式(1)で表され,2 粒子は波の1周期間の中で,波峰では接近し,波谷 では離反するという運動を行う.

 $L = \Delta x \cdot \sqrt{1 + (ka)^2 - 2ka\sin(kx_{0n} - \omega t)} \quad \cdots (1)$

ここで Δx は初期条件として与えた静水時の粒子 中心点間距離, kは波数, aは振幅, x_{0n} はn番目粒 子の初期 x座標, ω は角振動数, tは時間である. 接近した粒子間には, 表面張力による毛管現象で液 架橋が形成されて負圧が生じ, 液架橋力として粒子 同士を引き付け合う. 波力 F_{wave} は式(2)のように距 離の加速度を用いて表され, 波峰では隣り合う粒子 を引き離す方向にはたらく. mは粒子の質量である.

$$F_{wave} = m \frac{d^2 L}{dt^2} \qquad \cdots (2)$$

キーワード 海氷域, pancake ice, 液架橋力

岩手県盛岡市上田 4-3-5 岩手大学工学部建設環境工学科 · 019-621-6448 · 019-652-6048

2粒子が波峰で最も接近した時,液架橋力と,2 粒子を引き離す方向に働く波力が最大値をとる.こ のとき液架橋力が波力を上回れば,2粒子の接触時 間が波の1周期を超え,粒子間の水面が凍って粒子 同士が固結すると考えられる.本研究ではKitadate らと同様に,2粒子が固結した波浪条件では初期 pancake ice が形成され,成長できる条件と判断する.

Kitadate らの立方体モデルでは、2粒子間にはた らく液架橋力が過剰に推測され、形状補正係数 0.008を用いて液架橋力を補正している.

3. 計算方法の改良

本研究では、円柱モデルで表された 2 粒子間の液 架橋力と波力の比較によって pancake ice 生成指標を 作成する. **図-1**は、円柱モデルで表された 2 粒子と 粒子間に形成される液架橋の、2 粒子間の中心から 左側半分を示した図である.静水面からの水面の高 さを z=z(x)とする. dは粒子直径である.

曲率と表面張力による力のつり合いを示す式(3) を用いて,毛管現象によって静水面より高くなる円 柱間の液架橋形状を計算し,液架橋力を求める. (たとえば Pozrikidis, 2009)

$$\frac{d^2 z}{dx^2} = \frac{\Delta \rho g}{\gamma} \left(z + h_0 \right) \left\{ 1 + \left(\frac{dz}{dx} \right)^2 \right\}^{\frac{1}{2}} \qquad \cdots (3)$$

3

ここで $\Delta \rho$ は空気と海水の密度差,gは重力加速度, γ は氷ー水間の表面張力, h_0 は2粒子間の中心における水面高さである.

水面と粒子表面との接触点を (x_c, z_c) とし、その 点とz軸がなす角を ϕ (以下、付着角 ϕ と記す)とす る.また、接触点での粒子表面接線と水面接線がな す角を接触角 θ =27.5°(たとえば井本、1991)とす る.粒子径の等しい2粒子間の液架橋形状を計算す る場合、粒子と液架橋形状は左右対称となるため、 2粒子間の中心断面を鏡像境界とし、境界上では水 面の曲率を0として計算を行う.

これらの条件に基づいて付着角 ϕ と水面高さ h_0 を 決定するため、表面張力の鉛直成分によって持ち上 げることができる水の重量と液架橋全体の水の重量 を比較し、収束計算により、この2つがつり合うよ うに ϕ と h_0 を決定する.

以上のように求めた液架橋中心水位 h₀を用いて式 (4)により毛管負圧 F_cを算出する.

$$F_c = \rho_w g b h_0^2 \qquad \cdots (4)$$

ここで*b*は粒子の長さで、本研究では、粒子直径 *d*と等しい値を用いた.この負圧を粒子同士の引き 付け合う液架橋力と考える.

4. 計算結果

図-2に、周期0.4~2.0秒の波における pancake ice 生成限界振幅と実験で得られた生成・非生成波浪条 件を示す. 粒子直径 d=0.1mm~4mmの粒子モデル の計算結果をドットと点線で描き,Kitadate らの結 果を実線で表す.生成限界曲線の左側の波浪条件で は pancake ice が生成されず,右側では生成される. 実験値による生成条件と非生成条件が重なるところ が生成限界と考えられ,円柱形状による計算結果は, 実験結果や Kitadate らが求めた限界値とよく一致し ている.

また,粒子直径が小さくなるほど液架橋力の影響 が強まる傾向にあるが,波力が粒子の体積に比例し, 液架橋力が粒子の断面積に比例して決定されるため と考えられる.

粒子直径が大きい d=4.00mm で求めた生成限界振幅は実験値との差が大きく,液架橋力と波力の比較による pancake ice 生成指標は,frazil ice がある程度成長した場合には適用できないと考えられる.

図-3 および図-4 は、粒子中心点間距離 Δx を変えた場合の生成限界例で、 Δx が大きく粒子分布が疎

図-4 密度による変化(直径 d=1.0mm)

な状態では波浪条件に対して pancake ice が生成しに くくなり, frazil ice 分布密度が小さいと pancake ice が生成されないという実験結果と同様の傾向が見ら れる.

参考文献

井本稔(1991):表面張力の理論式とその応用 第5報, 日本接着学会誌, vol.27, No.11, pp.461-463

S.Kitadate. and S.Sakai. (2008) : Fundamental Study about the Formation Process of the Initial pancake ice, 19th IAHR International Symposium on Ice., pp.159-166

C.Pozrikidis (2009) : Fluid Dynamics: Theory, Computation, and Numerical Simulation. 2nd edn. New York, NY:Springer.