東北大学大学院	学生会員	〇郷右近 英臣
東北大学大学院	正会員	越村 俊一
産業技術総合研究所	非 会 員	松岡 昌志
東北大学大学院		今井 健太郎

1. 序論

(1)研究の背景・目的

2009年9月29日,米領サモアの南西沖でM8.1の地震が 発生した.地震に伴う津波はサモア諸島やトンガに達し, 死者184人,行方不明者7人の犠牲が発生した.発災後,津 波被災地の現地調査が数多く行われ,浸水域や浸水高,浸 水深などのような津波流況や,死者数,建物被害棟数の ような実被害の全容が明らかになってきた.

津波流況と被害の程度の関連性の解明は,被害推定を 行う上で重要である.これまでに世界で発生した津波災 害においても,それらの関係性を示す指標である津波被 害関数が数多く構築されてきた(たとえばKoshimura et al.,2009).しかし,本災害における津波流況と実被害の 関係性は未だ解明されていない.様々な津波災害におけ る被害関数を整備することが重要である.そこで本研究 では,津波被害関数を構築することにより,2009年サモ ア地震津波における津波流況と実被害の関係を明らかに することを目的とする.

(2) 本研究の手順

まず,津波数値計算を行うことにより,被災地における 津波流況を再現する.次に,高解像度衛星画像(QuickBird 衛星)の目視判読により,津波被災地の建物被害を把握 する.次に,津波流況と建物被害分析結果をGIS上で統 合分析することにより,津波被害関数の構築を行う.

2. 津波数值解析

(1) 遠地津波数値計算

まず、DARTにおける観測波形の再現精度の検証を行う ため、線形長波理論に基づく遠地津波計算を行う.断層パ ラメータとして、Beavan et al. (2010)に提案されたメカニ ズム解を参考にし、DARTにおける観測波形と比較・評価 する事で断層位置を調整する.地形データには、30秒メッ シュのGeneral Bathymetric Chart of the Oceans (GEBCO)を

図-1 初期水位分布

使用する.計算領域と,DARTの位置,初期水位分布を 図-1に示す.特にここでは,地震発生メカニズムをより 忠実に再現するために,Lay et al.(2010)を参考にし,断 層破壊継続時間も検討した.図-2に,DARTにおける観測 波形と津波数値解析結果を示す.解析結果は実測値と概 ね一致しているので,ここで決定した津波波源モデルを 近地津波解析に適用することとする.

(2) 近地津波数値計算

米領サモアにおける津波の氾濫解析を行う,そのため に,GEBCOの格子間隔30秒の地形モデルと,NGDCが公 開している高解像度DEMを組み合わせて地形モデルを作 成した.浸水域における地形の再現性を高めるために,キ ネマティックGPSによる高精度地形測量を行い,GIS上で DEMの補正を行う.

以上の波源と地形モデルを使用して津波氾濫解析を行う.津波浸水計算結果と,USGSの調査報告および著者ら ITSTの現地測量結果を元に作成した瓦礫漂着ラインを図-3に示す.

Pago PagoとPoloaでは、概ね浸水ラインは一致してい るものの、LeoneとAmanaveでは解析結果が過小に再現さ れており、これらは様々な不確定要素(地形モデル、津 波数値解析結果、現地調査結果)による誤差であると考 えられる.今後、本対象領域における津波被害関数の精 度を挙げるためには、各領域ごとに現地調査結果を満た すような波源を推定する必要がある.

図-2 観測波形と解析結果の比較

図-3 数値計算による浸水予測結果

図-4 上:建物被害棟数,下:津波被害関数

3. 衛星画像による建物被害分類

津波被災地を捉えた被災前後の高解像度衛星画像を GIS上で表示し,建物屋根の形状変化に着目した家屋被 害調査を行う.被災前の衛星画像には,米国GeoEye社 のIKONOS衛星画像(2007年4月15日)および,米Digital Globe社のQuickBird衛星画像(2009年9月24日)を使用し, 被災後の衛星画像として米Digital Globe社のQuickBird 衛星画像(2009年9月29日,2009年10月2日,2009年11月 2日撮影)を使用する.建物被害の分類には,Miura et al. (2006)が提案した分類基準を参考にする.建物被害分類 結果を図-4の上の表に示す.

4. 津波被害関数の構築

(1) 被害関数とは

津波被害関数とは,家屋・人的被害の規模を津波氾 濫流の流体力学的な諸量との関連で記述したものであ る(Koshimura et al., 2009). 津波被害関数は,被害情報 (家屋被害率P_D)と津波流況の関連性を回帰分析により 求め,対数正規分布や正規分布を仮定した次式で表さ れる.

$$P_D(x) = \Phi\left[\frac{\ln x - \lambda}{\xi}\right] \tag{1}$$

$$P_D(x) = \Phi\left[\frac{x-\mu}{\sigma}\right] \tag{2}$$

ここで,xは最大流速,最大浸水深,津波外力などの外力

指標で、 λ (または μ)、 ξ (または σ) はそれぞれln xまた はxの平均値と標準偏差である.本稿では一例として、最 大浸水深と家屋被害率に着目し、2009年米領サモア地震 津波における津波被害関数を構築した(**図-4**下図).

5. 結論

本研究では,DARTによる沖合津波観測波形の検証を 通じて,2009年地震津波における津波発生メカニズムの 検討を行った.さらに,米領サモアにおける津波氾濫解 析を実施し,衛星画像による建物被害分類結果と統合す る事により,暫定的ではあるが津波被害関数を構築した.

今後は,津波氾濫解析の精度を高め,米領サモアにお ける家屋の津波に対する脆弱性を明らかにすることが課 題である.

参考文献

- Miura, H., A. Wijeyewickrema, and S. Inoue (2006) : Evaluation of tsunami damage in the eastern part of Sri Lanka due to the 2004 Sumatra earthquake using remote sensing technique, *Proc. 8th National Conference on Earthquake Engineering*, Paper No.8, NCEE–856.
- Koshimura, S., Y. Namegaya and H. Yanagisawa (2009) : Tsunami Fragility – A new measure to assess tsunami damage, *Journal* of Disaster Research, Vol. 4, No. 6, pp.479–488, 2009.
- Beavan, J., X. Wang, C. Holden, K. Wilson, W. Power, G. Prasetya, M. Bevis and R. Kautoke (2010) : Near-simultaneous great earthquakes at Tongan megathrust and outer rise in September 2009, *Nature*, Vol 466, 19, doi:10.1038/nature09292
- Lay, T., C. J. Ammon, H. Kanamori, L. Rivera, K. D. Koper, A. R. Hutko (2010) : The 2009 Samoa?Tonga great earthquake triggered doublet, *Nature*, Vol. 466, 19, doi:10.1038/nature09214.