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1. INTRODUCTION 
  Shallow water equation (SWE) has been widely used for 
numerical simulation of solitary wave run up. Recent 
development has enhanced SWE model by coupling with 
k-ω model (Adityawan and Tanaka, 2010). However, 
breaking wave simulation using SWE is still a challenge 
since the equation itself does not have the appropriate 
terms. Boussinesq-type equations can be used to simulate 
breaking wave condition (Sato and Kabiling, 1994) by 
introducing a constant value of eddi viscosity in the 
shallower area. A more detail process of breaking wave is 
given by RANS type of model with turbulence closure, i.e. 
NEWFLUME (Lin et al., 1999). Nevertheless, these 
methods are far more complex than the SWE. 
  Breaking wave condition and discontinuity can be 
applied numerically to SWE model without the use of 
additional terms. SWE is commonly solved using finite 
difference scheme. Nevertheless, volume conservation 
problem arises due to discontinuities. A finite volume 
method has the advantage of solving the SWE and 
maintaining the volume conservation. The Godunov-type 
scheme with Riemann solver is known for its conserving 
and shock-capturing capability. A modification of 
Godunov-type scheme leads to a second order accuracy in 
space such as MUSCL scheme. 
  In this study, MUSCL and FORCE (Mahdavi and 
Talebbeydokhti, 2009) scheme is used to solve SWE. The 
scheme will provide numerical dissipation and shock 
capturing. Therefore, additional terms to accommodate 
breaking wave are not required. The method is used to 
simulate breaking solitary wave run up on a sloping beach. 
The results are compared to experimental data and a finite 
difference based SWE model. 
   
2. MODEL DEVELOPMENT 
2.1. Governing Equation 
  SWE consist of the continuity and momentum equation 
which can be written as. 

 
( 1)    

 
The vector of conserved variable V, the flux variable F and 
the source term S are defined as  
  

( 2) 

 

where t is time, x is distance, h is the water depth, U is the 

depth averaged velocity, g is the gravity acceleration and 

So and Sf are the bed slope and friction slope, given as 

follows. 

 

(3) 

where zb is the bed elevation and n is the Manning 

roughness coefficient. 

2.2. Numerical Methods 

  The governing equation, Eq,(1), can be rearranged into, 

(4) 

 
where L notates the right hand side of the equation.  
  Spatial derivation of flux F is approximated by 
conservative difference as 

    (5) 

 

where ∆x is the cell size. 
  The conservative variables (h and hu) discretization is 
conducted using the MUSCL scheme. The Surface 
Gradient Method (SGM) is applied, by calculating free 
surface elevation instead of depth to accommodate the 
effect of bed topography. 

 (6) 

where η is the surface elevation. 
  The following discretization of conservative variable h 
is given as an example. The left hand side (-) and right 
hand side (+) of the interface are evaluated using linear 
reconstruction. 

(7) 

 
The limited slopes from the above are as follows. 

(8) 

 

where ψ is the slope limiter which is given by a 
Superbee-type-non-linear slope limiter (Toro, 2001).  

(9) 

 

 

 

 
where r is the ratio of successive jumps in the 
conservative h 

(10) 

 

with 

(11) 

 

 

  The depth at the evaluated locations can be calculated 
using Eq.(6). Same steps are conducted to evaluate 
conservative variable hU, without SGM. 
  The numerical flux (F) is evaluated using FORCE 
scheme which is a combination of Lax-Friedrichs (LF) 
and Lax-Wendroff (LW) scheme. 

(12) 
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Lax-Friedrichs flux (FLF) is given as 

(13) 

 

and Lax-Wendroff flux (FLW) is given as 
(14) 

 

 

where, VLW is the intermediate state of conserved variables 
and ∆t is the time step interval. 
  Time integration is solved using TVD Runge-Kutta.  

 

(15) 

 

Time step is not constant and evaluated using the 
Courant-Friedrichs-Lewy (CFL) stability given by 

(16) 

 

where c is the Courant number. 

  Wet dry moving boundary condition is applied by 
giving a minimum depth (hmin) to all physically dry cell. 
Water depth bellow the minimum depth will be assigned 
with zero momentum (dry).  
 
3. RESULTS AND DISCUSSION 
  The model is applied to an experimental case 
(Synolakis, 1986) shown in Figure 1 with the ratio of the 
incoming wave height and water depth of 0.3 which 
corresponds to the breaking wave condition in the 
experiment.    
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Figure 1. Wave setup. 
 
  Another SWE model, solved using finite difference 
Mac Cormack predictor corrector scheme (Adityawan, 
2007) is also simulated for comparison. For both model, 
we used the same grid system. The model domain was 
divided into 470 grids in x direction with grid spacing 
equals to 0.2∆x*. 
  The results are shown in Figure 2. It is observed that 
the FORCE MUSCL scheme provides better comparison 
to experimental data. The Mac Cormack based model fails 
to provide an accurate water profile. It is observed that the 
finite difference scheme gives an unrealistic profile at the 
early stage of run up, noted with a pointy shape at the 
wave top. This also occurs as the breaking wave moves 
over a dry bed.  
 
4. CONCLUSION 
  We have shown a type of finite volume model, based on 
FORCE MUSCL scheme, which we applied to solve SWE. 
The model was used to simulate breaking solitary wave 
run up on a sloping beach. Comparison between the finite 

volume scheme, finite difference scheme and experimental 
data has shown the superiority of the finite volume method 
compares to the finite difference method. Hence, the 
model would significantly improve the accuracy of SWE 
model in wave breaking simulation without the necessities 
to modify the equation itself.  
  The model can be further enhanced by coupling with a 
two equation model for assessing bed stress directly from 
the boundary layer.  
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Figure 2. Simulation Result 
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