海氷域におけるパンケーキアイスの大きさに関する統計的特性

岩手大学 学生会員 〇小松和, 朴 燕子, 正会員 小笠原敏記

1. はじめに

北極海では,温暖化の影響によって,ニラスと呼 ばれる壊れにくいシート状の氷からパンケーキアイ スと呼ばれる円盤状の氷へと氷況が変化し,日本の 面積の約3倍もの海面が露出するようになった. Shenら(2001)によると,パンケーキアイスは,長周 期・低波高の波浪条件下で生成され易いと言われて いるが,その大きさと波浪条件との関係は未だ定性 的な評価に留まっている.

そこで本研究では,氷海-波浪水槽実験によって 海面に生成・発達する氷盤の大きさを定期的に計測 し,この計測データを基に,波浪条件とパンケーキ アイスの大きさの関係を統計的に取り扱い,確率密 度関数による氷況分布の定式化を試みる.

2. 実験方法

実験は、冷凍庫内にプランジャー式造波装置を設置した水槽(L 17× H 1.2× W 0.5m)を用いた.周期 *T*=1.2 ~1.8 秒の規則波を発生させ、入射波高を 4cm の一定とした.室温は、-7.6~-8.4℃の範囲であった.造波開始から 2 時間毎に海面に生成・発達するパンケーキアイスの長さ L_i を計測した.なお、 L_i は造波方向の長さである.また、計測は造波板から 5m の位置から13m の位置までの 8m の範囲で行った.表-1 に各周期における 4 時間毎のパンケーキアイスの個数と全個数 N を示す.周期によって多少のバラつきが見られるが、2桁~3桁の個数を計測することができた.

表-1	各周期における4時間毎の
パンケー	-キアイスの個数および全個数

周期T(s) 時間(hr)	1.2	1.4	1.5	1.6	1.8
0~4	274	247	12	25	125
4~8	221	210	107	46	342
8~12	107	103	151	106	179
12~16	100	113	89	169	124
全個数N	702	673	359	346	770

3. 実験結果

図-1は、各周期におけるパンケーキアイスの大き

キーワード パンケーキアイス,海氷,確率密度関数

岩手県盛岡市上田 4-3-5 岩手大学工学部社会環境工学科 · 019-621-6448 · 019-652-6048

さの割合を示す. なお, 図中の値はパンケーキアイ スの長さ *L_i*を 10cm 間隔で区分し, その個数を全体 の個数で割ったものである. 全周期において 10cm 以 下のパンケーキアイスが最も多く, 全体の個数の約 50%以上である. また, パンケーキアイスが大きく なるに連れて, その割合が小さくなる傾向を示す. 41cm 以上の割合は, 周期 1.4 秒が大きな値を示して いるが, 周期 1.6 秒および 1.8 秒ではゼロであった.

次に、パンケーキアイスの長さ L_i を各周期の波長 で無次元化し、**表-1** に示す各時間のパンケーキアイ スについて、大きい順に N/3 個を選び、その平均値 $L_{i1/3}$ を示したものが図-2 である.造波開始から 4 時 間までは、 $L_{i1/3}$ の値は周期によるバラつきは余りなく、 波長の 3~5%程度となる.しかし、時間の経過に伴

表-2 各周期における正規分布 および対数正規分布の平均・分散・標準偏差

周期T(s)	正規分布			対数正規分布		
	平均	分散	標準偏差	平均	分散	標準偏差
1.2	9.89	34.19	5.85	2.14	0.30	0.55
1.4	11.87	34.75	5.90	2.36	0.22	0.47
1.5	11.49	56.65	7.53	2.26	0.36	0.60
1.6	12.34	59.89	7.74	2.35	0.33	0.58
1.8	10.06	24.25	4.92	2.20	0.21	0.46

い,周期が短くなるに連れて増加傾向を示し,16時間後では,周期1.5秒以下になると波長の8~11%程度まで成長する.周期1.6秒および1.8秒では,時間的な変化は見られず,約4%の大きさを示す.

ただし,今回の計測開始範囲が造波板から5mの位 置であり,反射波の影響を受けて,大きな氷盤が造 波板近くに移動した可能性が考えられる.

表-2 は,各周期における正規分布および対数正規 分布の平均,分散,標準偏差を示す.なお,平均お よび分散の各値は,次式によって求めた.

$$\overline{L_i} = \frac{1}{N} \sum_{i=1}^N L_i = e^{\left(\overline{L_i} + \frac{\sigma^{\prime 2}}{2}\right)} \qquad \cdots (1)$$

$$\sigma^{2} = \frac{1}{N} \sum_{i=1}^{N} (L_{i} - \overline{L_{i}})^{2} = e^{(2\overline{L_{i}} + 2\sigma'^{2})} - e^{(2\overline{L_{i}} + \sigma'^{2})} \qquad \cdots (2)$$

表-2 からわかるように,正規分布ではバラつきが大 きいため,対数正規分布を用いることにした.この ときの対数正規分布の確率密度関数は次式となる.

$$f(L_{i}) = \frac{1}{\sqrt{2\pi}\sigma' L_{i}} e^{\left\{-\frac{(\ln L_{i} - L_{i}')^{2}}{2\sigma'^{2}}\right\}} \cdots (3)$$

図-3 は、周期 1.2、1.5 および 1.8 秒における確率 密度関数の 4 時間毎の時間変化を示す.周期 1.2 およ び 1.5 秒では、8 時間までは比較的小さい氷が形成さ れるが、時間の経過に伴って様々な大きさの氷が分 布するようになる.一方、周期 1.8 秒では、時間の経 過に関わらず、氷況に変化が余り見られない.つま り、同じようなパンケーキアイスが計測範囲内に分 布していたことが考えられる.

図-4 は、各周期における確率密度関数を示す. 全 周期において、比較的同じような分布を示し、10cm 前後の大きさのパンケーキアイスが最も多く生成さ れることがわかる. また、図中の実線は、全周期の 平均値であり、次式を用いることによって、氷況分 布を表すことができる.

$$f(L_i) = \frac{1}{\sqrt{2\pi} \times 0.519 \times L_i} e^{\left\{-\frac{(\ln L_i - 2.230)^2}{2 \times 0.269}\right\}} \quad \cdots (4)$$

参考文献

Shen, H.H., S.F. Ackley, and M.A. Hopkins : A conceptual model for pancake-ice formation in a wave field., Annals of Glaciology, Vol.33, pp.361-367, 2001.