東北大学工学部 学生会員 東田 現 東北大学災害制御センター 正会員 有働 恵子 東北大学災害制御センター 正会員 真野 明

1. 研究の背景と目的

河川での土砂の堆積・侵食は水の流れによって引き起こ される現象であり、河川管理上、これらの現象を制御する ことが重要な課題となっている。例えば曲がりのある流路 では、流れの剥離により片方の川岸では死水域が生じ、流 速が減衰し堆積が促進される。また、もう一方の川岸では 剥離した流れが衝突し侵食が促進される。以上のことから、 流れの剥離は土砂の堆積・侵食を評価する上で重要な現象 である。

土砂の堆積・侵食を制御する対策として、水制の設置や 護岸を行なうといった対策があるが、適切な効果を得るた めには、対象とする流路の流れ場を精度良く予測し、それ に基づき水制の設置や護岸を行なう必要がある.このよう な平面流れ場を予測するモデルとして、真野ら(2008)は、 非構造格子を用いた空間・時間ともに一次精度の有限体積 法による流れ場の計算モデルを開発し、Fassyal ら¹⁾は非 構造格子を用いた空間・時間ともに二次精度の有限体積法 による計算モデルを開発している.この他にも数多くモデ ルが開発され研究がなされているが、流れの剥離について 議論したものが少ないのが現状である.

そこで本研究では既存の有限体積法による流れ場の計 算手法を取り入れ,流れの剥離による流れ場の変化を高精 度で予測し,土砂の堆積・侵食の制御に役立てることので きる計算モデルを新たに開発することを目的とする.離散 化には空間に MUSCL(Monotone Upstream-centered Scheme s for Conservation Laws)法,時間に中央差分を導入し,空 間・時間ともに二次精度の計算モデルを開発した.

2. 計算モデル

本研究では図2のように要素の中心に流量,水位を配置 した co-located 格子と呼ばれる非構造格子を用い,有限体 積法による計算を行った.流れの支配方程式は,本研究で は平面流れ場の計算を行うため,連続式および三次元 Reynolds 方程式を鉛直方向に積分した浅水流方程式を式 (1)のようにまとめて用いた.ここで,ηは水位,q_xおよび q_y はそれぞれxy方向の単位幅流量,uおよびvはそれぞれxy方向の流速,gは重力加速度,Dは底から水面までの全水深, v_r は鉛直方向に平均した渦動粘性係数, τ_x および τ_y はそれぞれxy方向の底面せん断応力である.

$$\frac{\partial}{\partial t}Q + \frac{\partial}{\partial x}E + \frac{\partial}{\partial y}G = W + \frac{\partial}{\partial x}H + \frac{\partial}{\partial y}I$$

$$Q = \begin{pmatrix} \eta \\ q_x \\ q_y \end{pmatrix}, E = \begin{pmatrix} q_x \\ uq_x + gD\eta \\ vq_x \end{pmatrix}, G = \begin{pmatrix} q_y \\ uq_y \\ vq_y + gD\eta \end{pmatrix}$$

$$, W = \begin{pmatrix} 0 \\ \tau_{bx}/\rho \\ \tau_{by}/\rho \end{pmatrix}, H = \begin{pmatrix} 0 \\ \frac{\partial q_x}{\partial x} \\ \frac{\partial q_y}{\partial x} \end{pmatrix}, I = \begin{pmatrix} 0 \\ \frac{\partial q_x}{\partial y} \\ \frac{\partial q_y}{\partial y} \end{pmatrix}$$
(1)

式(1)を領域 S_i , 境界 Γ_i のコントロールボリュームCV(i)で積分し, ガウスの発散定理を用いて整理すると,

$$\frac{\partial}{\partial t}Q_{i} = -\frac{1}{S_{i}}\sum_{j=1}^{3} \left(F_{ij} - J_{ij}\right)\Gamma_{ij} + W$$
⁽²⁾

式(2)の離散化に、空間にはMUSCL法、時間には中央差 分を適用することで、空間・時間ともに二次精度の計算を 行った.また、MUSCL法による計算についてはFassyal ら¹⁾、Ji-Wen-Wang ら²⁾の研究を参考とした.

3. 計算結果および考察

計算対象として図1のようにメッシュを張った蛇行河 川を対象とし、要素数は665とした.メッシュ形成には Free Soff VORO"を用い、蛇行部ではメッシュを細かくし た.境界条件として、上流では等流水深、下流では堰を設 け限界水深、壁面境界ではスリップ条件を与えた.また、 時間ステップは *Δt*=0.02とし *t*=180000まで計算を行なう ことで、*t*=3600s における流れ場の予測を行った.

Keywords:流れの剥離,土砂堆積,河岸侵食,有限体積法,MUSCL法,非構造格子

E-mail: aratasngoi@potential1.civil.tohoku.ac.jp

図2より、一次精度・二次精度の計算値ともに流れが蛇 行部で剥離し、死水域が右岸側に生じていることを再現で きた.しかし、一次精度の計算値は蛇行部より上流の壁面 沿いにおいて、スリップ条件を仮定しているにも関わらず 流速値のばらつきが大きい.これに対して、二次精度の計 算値は蛇行部より上流の壁面沿いにおいて流速分布にば らつきがなく、死水域では等高線の間隔が狭く、流れが剥 離したことにより、流速が急激に減少したことを再現でき た.また、図3より一次精度の計算では、蛇行部において 流速ベクトルが壁面に沿って下流に向いているが、二次精 度の計算では流速ベクトルが壁面から離れ、流れが剥離し たことを再現できた.また、死水域では後流が生じ、流れ が逆流していることを再現できた.

4. まとめ

二次精度の計算手法である MUSCL 法,中央差分を用 いて計算を行なうことによって,剥離による流れ場の変化 を再現できるようになった.今後はさらに実験値と比較す ることで定量的な検証を行ない,土砂の堆積・侵食の制御 に役立てることのできる流れ場の計算モデルの開発を進 めていく.

参考文献

1) Fassyal Benkhadoun, Slah Sahmim, and Mohammed Seaid, Solution of the sediment transport equations using a finite volume method based on sign matrix, SIAM Journal on Scientific Computing Volume 31, 2009

 Ji-Wen-Wang and Ru-Xun Liu, A comparative study of finite volume methods on unstructured meshes for simulation of 2D shallow water problems, Mathematics and Computers in Simulation 53, p171-184, 2000

