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1. INTRODUCTION 
A relevant advance in surface and subsurface 

hydrological research is the growing interest on 
assessing the final user on the degree of belief of 
modeling products (Montanari et al., 2009), as a form 
to bridge the gap between research and practice. We 
assess the predictive uncertainty of a semi-distributed 
water balance model (Collick et al., 2009) through 
Monte Carlo-generated response surfaces (Beven, 
2004). The aim is to investigate the runoff response 
of a remote poorly-gauged basin in the Andes of 
Bolivia. The basin is a spatially heterogeneous 
(differenced hydrological response along the main 
river stream), high-elevation watershed (large 
difference in altitude between upstream and 
downstream). The objective is not only to address the 
model predictive uncertainty, but also to analyze the 
relevance of the assessment to increase the 
contribution to the current knowledge. 

 
2. STUDY AREA AND DATA 

The study basin (1471 km2) is in the remote 
highlands of the Cordillera Real (15.8 to 16.3S, 
tropical Andes), upper Beni River basin (subbasin of 
the Amazon River basin). The high-elevation of the 
Cordillera determines variations in altitude of 5,500 
m a.s.l. within horizontal distances of 50 km in 
average, which defines the spatial heterogeneity in 
topography and climate. Monthly precipitation data 
at eight stations situated between 4800 and 1196 m 
a.s.l. is provided by a local hydropower generation 
company COBEE. Climatic data is from SENAMHI. 

 
3. METHODS 
3.1 Monthly semi-distributed water balance model 

The model is semi-distributed in horizontal buckets. 
A saturation-excess runoff response is the basis of the 
perceptual model. The conceptual model is described 
by Equation 1 (Collick et al., 2009), where S [L] is 
the soil water storage volume, t is time, Δt is time 
step, P [L/T] is rainfall intensity, Rse [L/T] is 
saturation excess runoff rate, Perc [L/T] is 
percolation, Ea [L/T] is the actual evapotranspiration 
obtained from the potential evapotranspiration PET 
multiplied by a fraction of rain days (raindays [days]). 
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When P<Ea, the soil water depth above saturation 

SE is zero. When P>Ea, SE [L] (that becomes either 
Rse or Perc) is calculated with Equation 2 (Collick et 
al., 2009), where Csc [non-dimensional] calibrates 

the threshold when surface runoff occurs (i.e., the 
difference between the maximum soil storage STmax 
[L] and the soil storage at wilting point Swilt). Cse 
[non-dimensional] decides the proportion of water 
that is converted into Perc or Rse (Equations 3 and 4). 
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The contribution of Perc to the groundwater 

storage (SGW [L]) is calculated with Equation 5. The 
contribution to groundwater flow over a unit of 
surface area (RGW [L/T]) is calculated with a linear 
reservoir model (Equation 6), where k [non-
dimensional] is the recession constant. 
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3.2 Numerical experiments  
To assess the water balance model predictive 

uncertainty, the model parameters Csc, STmax, Swilt and 
Cse are assumed uncertain. In addition, to assess the 
predictive performance of the water balance model 
under an imperfect measuring network, observed P, 
PET, and “observed” raindays are assumed uncertain. 
The assumption of input data as uncertain 
information may serve as a guide to assess the 
impacts of changes in climatic conditions; however, 
considering the complexity of such affirmation, the 
results are not strictly analyzed from such perspective. 

Monte Carlo experiments are carried for the period 
September 1981-August 1982 (sample size 2048), 
assuming an ignorance on the model predictive 
response (uncertain variables follow uniform 
distributions). Response surfaces (Beven, 2004) are 
employed to analyze the outcomes. Having a 
heterogeneous study basin, the assessment is carried 
on representative buckets: Z1 (rainforest) and Z9 
(sparse vegetation, shallow soil depths). Uncertainty 
bounds fall within a range +/- 20% in reference to 
“calibrated” and “observed” values shown in Table 1. 

  
Table 1 Calibrated and observed values (wet months). 

S wilt 

[mm] 
Csc 
[-] 

S Tmax 

[mm] 
Cse 
[-] 

P    
[mm] 

PET 
[mm] 

raindays 
[days] 

Z1; 500-1000 10.0 0.2 100.0 0.2 610.0 141.0 30.0
Z9; 4001-45005.0 0.2 40.0 0.8 247.0 141.0 10.0

Bucket; 
altitudinal 
range               
[m a.s.l.]

Calibrated values Observed values

 

Keywords: Monte Carlo experiments, response surfaces. 
Tohoku University, 6-6-06 Aoba, Sendai 980-8579, Japan. Tel & Fax: +81-22-795-7451 



The uncertainty in model inputs is assessed for two 
observations: the wettest observation (January 1982) 
and the driest observation (May 1982). The wettest 
month is assumed a relevant uncertainty indicator of 
the model adequacy to represent catchment runoff 
responses, because during such wet period strong 
relationships between model response and 
hydroclimatic conditions occur (Yapo et al., 1996). 
On the other hand, the driest month is assumed a 
relevant indicator of the model inadequacy, because 
during such periods it is expected the lowest model 
predictive performance. 

 
4. RESULTS 

The model predictive uncertainty varies according 
to the geographical location where the water balance 
(WB) is estimated. As suggested by the identifiability 
in P and Cse patterns (Fig. 1), the WB during wet 
periods is dominated in humid regions (Z1) by 
variations in precipitation P, whereas in arid regions 
(Z9) the watershed runoff response is dominated by 
saturation-excess runoff processes that constitute the 
basis of the perceptual model (conceptually described 
by parameter Cse). During dry periods, the relevance 
of the soil storage capacity (Cse) over the input P and 
evapotranspiration (PET) seems likely. 

The conceptual model predictive uncertainty is 
assessed through the trends of inputs P and PET (Fig. 
1). The identifiability in P trends, more emphasized 
in wet regions (Z1), suggests an adequate model 
performance during wet periods (January) and an 
uncertain behavior during low flows. During dry 
periods, such uncertainty is more relevant in humid  

 

 
Fig. 1 Response surfaces for buckets Z1 and Z9, 
where Spec.Runoff  stands for “specific runoff”. 

regions (Z1) than in arid regions (Z9), suggesting the 
need for additional field data when the modeler’s 
interest is focused on low flows. The uncertainty in 
PET inferences is demonstrated to be higher in humid 
regions (Z1) in proportion to the amount of water 
available for those processes.   

Parameters Csc, STmax, Swilt are influential on initial 
conditions, as suggested by the scatter patterns drawn 
(Csc patterns in Fig. 1 are representative for STmax 
and Swilt). The latter mentioned behavior is in general 
desired in most models, because in that form the 
influence of calibrable parameters is minimized. 

 
5. CONCLUSIONS 

Two-dimensional response surfaces demonstrate 
the relevance of the input precipitation and the soil 
storage capacity in humid and arid regions where 
saturation-excess is assumed to be the most likely 
runoff mechanism. Thus, this research suggests that: 
- The uncertainty contribution from an imperfect 

precipitation observation is likely to be as relevant 
as the uncertainty contribution from the conceptual 
model itself, especially during wet catchment states.  

- In humid regions, the uncertainty in precipitation 
data is unlikely to propagate to other months, 
which does not seem to occur in arid regions, 
where the input data uncertainty contributions are 
likely to have an effect on subsequent time steps. 

- From a modeler and a practitioner’s perspective, to 
draw adequate perceptions of a system during dry 
states is likely to demand “specific” field data in 
addition to the information granted as sufficient to 
describe wet states of the catchment. The reason is 
the high predictive uncertainty in dry-catchment 
states compared to the uncertainty expected during 
wet catchment states. 
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