水撃圧破壊における管強度の変化と破壊領域について

東北学院大学工学部学生会員 菅原 康太 東北学院大学工学部 正会員 河野 幸夫

1. 序論

現在のパイプラインの設計には静的の水撃圧と強度を 使用して肉厚の設計をおこなっている。しかしながら動 的の水撃圧の影響によってパイプラインが破壊するとい う事故が実際に起こっている。一般的に水撃圧とは流動 している液体が弁によって急閉鎖される事によって管内 に発生する急激な圧力上昇の事を言い、これが動的に管 路の内側に負荷される。このような水撃圧を動的な負荷 として扱った研究はほとんど見られない。そこで本研究 では市販の塩化ビニル管供試体を用いて水圧載荷による 準静的破壊・動的破壊を行い、圧力の挙動を調べる。ま た二台の高速度カメラを用いて準静的破壊と動的破壊に おける破壊現象を調べる。

本研究の目的は、

1. 円柱座標系における半径方向の運動方程式を考え、 水撃圧による高速拡管現象において管に作用する内圧が 成す仕事を調べる。

2. 準静的破壊から動的破壊までの破壊を行うことによって、破壊形状がどのようにパターン分けされるのかを
3. 準静的破壊から動的破壊を行い、その時得られた破壊形状の分布を検討し、破壊領域の範囲を調べる。

2. 円柱座標系における半径方向の運動方程式

円管の微小要素での半径方向の運動方程式を誘導し、 薄肉円管の場合を考慮すると、運動方程式は次式で示さ れる。

$$\rho h \frac{\partial v}{\partial t} = p - \frac{\sigma_{\theta} h}{r}$$

h = 円管の肉厚、r = 半径 p = 内圧

上式を roから r まで積分、整理すると次式になる。

$$2\pi\int_{r_{\theta}}^{r} prdr = 2\pi r_{\theta}h_{\theta}\int_{\theta}^{\varepsilon_{\theta}}\sigma_{\theta}d\varepsilon_{\theta} + \pi\rho r_{\theta}h_{\theta} \cdot v^{2}$$

 $\varepsilon_{ heta} = 円周方向のひずみ <math>h_{ heta}, r_{ heta} = 円管肉厚 , 半径 1.$

上式において W_e = 内圧のなした仕事, W_p = 塑性変形 に費やした仕事, W_k = 運動エネルギーに費やした仕事と すると以下の式になる。

$$W_e = W_p + W_k$$

W_kは準静的、動的の場合はゼロに近づくので、無視する ことができ、以下の式が得られる。

 $W_e = W_n$

キーワード 水撃圧、強度、応力ひずみ曲線

住所 宮城県多賀城市高崎 3-17-7

3. 水圧破壊実験方法

(OS-Windows 2000)

図 - 1 水圧破壊実験装置図

供試体を実験装置に接続し、偏心、引張りなどの他の 作用力が働かないように注意して、管路軸方向の伸びが 発生しないように4本のL字フレームによりしっかりと 固定する。供試体の両端部分に圧力変換器(ch1,ch2)を 取り付ける。実験装置内に電動ポンプにて水を満たす。 気温、水温の測定後実験を開始する。電動ポンプによっ て水圧載荷する。載荷開始から破壊までの載荷時間は0 ~900秒程度で行い、水圧載荷中は供試体接続部、圧 力変換器取り付け部などから水漏れがないかチェックを する。

4. 結果

4.1 塩化ビニル管の破壊形状

図-2 に示してあるように、塩化ビニル管は4つの破壊形 状に分類することができた。(a)が膨張破裂破壊、(b)は小 穴状破壊、(c)は膨張Y状破壊、(d)は完全Y状破壊となっ た。

4.2 応力ひずみ曲線

図-3は載荷時間0.78秒の時の圧力のグラフを示してい る。応力ひずみ曲線を描くためにグラフから20点を抽出 し、各々の点でのひずみを求める。ひずみの求め方は図 -4に示してあるように写真から求めることとする。下の 計算結果は実際に20個のひずみを算出したものである。 このように点(1)から(20)までのひずみを算出し、その結 果を使用し描いたものが、図-5に示してある応力ひずみ 曲線である。この応力ひずみ曲線の面積が、先に説明し た塑性変形に費やした仕事(Wp)の積分形の部分に適応さ れ、計算することができるのである。

図-4 点(20)の写真

図 - 5 載荷時間 0.78 秒の応力ひずみ曲線

 $=1666.26(N/mm^{2})$

4.3 全ての実験結果

図-6 は圧力と強度に対する水圧載荷時間のすべての実 験データを示したものである。さらに載荷時間の変化に よる破壊形状も分布も示している。実際に塩化ビニル管 の持つ強度は 56.0 (N/mm²)であるが、グラフを見ると載 荷時間が短くなるにつれて強度は上昇していき、動的に なると強度は約 70 (N/mm²)という、約 1.3 倍もの値を示 している。

図-6 圧力と強度と水圧載荷時間の関係

4.4 破壊領域の分類

図-7 は破壊領域を示した図である。実験で得られた強度と破壊形状により、準静的領域、動的領域、遷移的領域の3つの領域に分けることができた。

図-7 破壊領域

5. 結論

1. 塩化ビニル管は4つの破壊形状に分類することがで きた。(a)が膨張破裂破壊、(b)は小穴状破壊、(c)は膨張 Y 状破壊、(d)は完全 Y 状破壊となった。

2. 実際に塩化ビニル管の持つ強度は 56.0 (N/mm²)で あるが,動的になると強度は約 70 (N/mm²)という、約 1.3 倍もの値を示している。

3. 破壊領域は動的領域、静的領域、繊維的領域の3つに 分類することができた。