RC柱の非線形解析における鉄筋のモデル化に関する検討

八戸工業大学大学院 学生会員 ○阿里甫江 夏木西 八戸工業大学 正会員 長谷川明

1. はじめに

現在、非線形解析ソフトとして多くの研究者が利用している ADINA による鉄筋コンクリート (RC) 構造解析では、多くの場合、利便性から REBAR 要素モデル (REBAR モデル) を使用している。REBAR モデルは、ADINA で鉄筋をシミュレートする際の専用要素と言える。しかし、REBAR モデルを使って RC 構造を解析すると、RC の荷重-変位曲線はコンクリートのそれに似ているが、最大荷重以降の荷重-変位曲線は、実験結果と大きく異なっている。これは、少なくとも荷重-変位曲線に鉄筋の影響を反映していないことを意味する。

そこで、本論文では、円筒形断面を有する RC 柱を例に、コンクリートおよび RC 柱の軸圧縮試験と、BEAM 要素 モデル (BEAM モデル) および REBAR 要素モデルの解析結果と比較考察した。

2. 軸圧縮試験

2.1 試験体概要

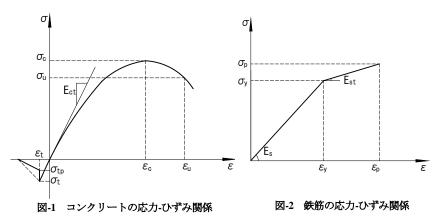
数値解析に比較基準を提供するために、コンクリートおよび RC 柱の軸圧縮試験が実行された。すべての試験体の外径と高さは 150mm と、それぞれ 450mmで、コンクリートの強度は 40MPa だった。試験体は 2 つグループに分けられて、各グループで 3 つ同じ試験体が準備された。試験体の詳細情報を表-1 に示す。

2.2 試験結果

数値解析と比較するために、軸圧縮試験から得られた重要なデータを表-2に示す。

表-1 試験体の詳細情報

グループ名	コンクリート	RC
試験体名	C-T-(1, 2, 3)	RC-T-(1, 2, 3)
横断面	150mm	150mm
主鉄筋	-	数量:6 材料:SD295 直径:6.0mm
フープ鉄筋		材料: SS400 直径:3.0mm 間隔:30mm


表-2 最大荷重および対応変位

グループ名	コンクリート		RC			
試験体名	C-T-1	C-T-2	C-T-3	RC-T-1	RC-T-2	RC-T-3
最大荷重(kN)	619. 3	568.3	677. 5	599. 7	527. 1	656. 0
平均 最大荷重(kN)		621. 7			594. 3	
対応変位(mm)	1. 28	1.34	1. 34	1.36	2. 61	1. 33
平均 対応変位(mm)		1.32			1. 77	

3. 非線形解析モデル

3.1 コンクリートの材料モデル

図 1 のように、コンクリートの材料モデルは ADINA から提供された材料モデルを採用する。この分析で: σ_c =38.4Mpa(試験による)、 ε_c =0.003、 σ_u =34.0Mpa(σ_u =0.8 σ_c)、 ε_u =0.006(1.2 ε_c $\leq \varepsilon_u$ $\leq 11\varepsilon_c$)、 σ_i =2.6Mpa、(σ_i =0.23(σ_c)^{2/3}) 、 E_{ct} =2.9x10⁴Mpa (E_{ct} =4,700 $\sqrt{\sigma_c}$ MPa)、 σ_{tp} =0。

キーワード:鉄筋; RC 構造; ADINA; 非線形解析; 荷重-変位曲線

連絡先: 〒031-8501 青森県八戸市妙字大開 88-1 TEL: 0178-25-3111

3.2 鉄筋の材料モデル

図 2 のように、鉄筋の材料モデルは ADINA から提供されたバイリニア材料モデルを採用する。この分析で: $\sigma_v=295$ Mpa、 $E_s=2.0x10^5$ Mpa、 $E_{sr}=2000$ Mpa($E_{sr}=0.01\sim0.0125E_s$)。

4. 非線形解析および検討

圧縮試験に対応して、3種類の柱を解析した。その際、10 ノ ード、3 次元ソリッド要素を使って解析した。

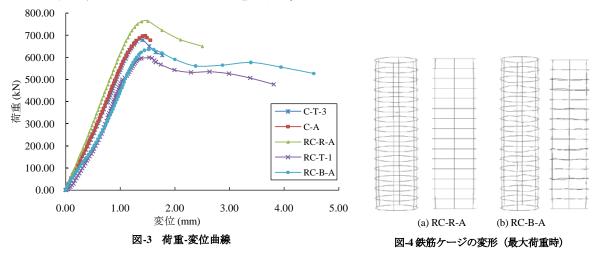
- 1) コンクリート柱: 名称 C-A
- 2) 鉄筋コンクリート柱 (REBAR モデル) : 名称 RC-R-A
- 3) 鉄筋コンクリート柱 (BEAM モデル) : 名称 RC-B-A

解析後、代表的な試験体 (C-T-3 と RC-T-1) の結果と、非線 形解析の結果を比較した。これを、表-3、図-3、図-4 に示す。 これらから、次のことが言える:

- (1)表-3によると、最大荷重とそれに対応する変位の結果は、REBAR モデル (RC-R-A) を使用すると、実験値と大きな差が生じることを示している。
 - (2) 図-3によると、REBAR モデル (RC-R-A) の非線形解析

表-3 最大荷重および対応変位

名称		試験	解析	誤差
コンクリート	最大荷重(kN)	677.50	697.60	2.88%
(C-T-3 と C-A)	変位 (mm)	1.34	1.46	8. 22%
REBAR モデル	最大荷重(kN)	599.70	764. 70	21.58%
(RC-T-1 ≥ RC-R-A)	変位 (mm)	1.40	1.65	15. 15%
BEAM モデル	最大荷重(kN)	599.70	636.00	5.71%
(RC-T-1 と RC-B-A)	変位 (mm)	1.40	1.52	7.89%


表-4 REBAR モデルと BEAM モデルの比較

比較項目	REBAR モデル	BEAM モデル
要素タイプ	truss	beam
断面力	N	N, V, M
収束性	G	NG
計算速度(秒)	G(0. 34)	NG(0. 51)
メモリ使用量(MB)	G (65. 6)	NG (75. 3)
精度	NG	G

*G=good, NG=not good

曲線はコンクリート(C-T-3)の曲線に似ている、また、試験の曲線(RC-T-1)と比べると大きい差がある。これに反して、BEAM モデル (RC-B-A) ではコンクリート(C-T-3)の曲線と異なり、実験の曲線(RC-T-1)とよく一致する。

(3) 図-4 によると、柱は最大荷重に到着する時、REBAR モデル (RC-R-A) の鉄筋には大きな変形がないのに、BEAM モデル (RC-B-A) の鉄筋に大きな変形を明らかに観察できる。これは、BEAM モデル (RC-B-A) が REBAR モデルより実際の状態に近づいていることを意味する。

REBAR モデル (RC-R-A) と BEAM モデル (RC-B-A) の違いを表-4 に示す。REBAR モデルでは、シミュレートする時、鉄筋をトラスとして取り扱うのに対し、BEAM モデルでは、鉄筋を梁材として取り扱っている。したがって、BEAM モデルでは軸力、せん断力および曲げモーメントが生じるが、REBAR モデルでは軸力のみが評価されている。これが、BEAM モデルが REBAR モデルより、実態に近く鉄筋をシミュレートすることができる要因と考えている。

5. まとめ

ADINAでRC構造を解析する時、BEAMモデルはREBARモデルより鉄筋をもっと良くシミュレートすることができる。また、モデリング操作の点から考えても、BEAMモデルはREBARモデルよりもっと簡単に操作できることがある。しかし、解の収束から考えると、REBARモデルはBEAMモデルより収束しやすい。非線形解析を実行する時に、解の収束は顕著な問題であり、要素の型、メッシュのサイズ、収束条件、積載方法、材料特性などと関係がある。今後、解の収束性、計算時間、モデリングなどの研究が必要である。