三層板有限帯板法を用いた既設鋼鈑桁橋の衝撃応答解析

岩手大学大学院工学研究科 学生会員 ○小綿 貴幸 岩手大学工学部 正会員 正二 出戸 秀明 岩崎 岩手大学工学部 片岡 直樹 (株) 福山コンサルタント 宮村 正会員 正樹

1. はじめに

東北地方の道路橋R C床版の損傷は、RC 床版下面の疲労 損傷に加えて床版上面コンクリートの砂利化などの損傷が 同時に進行し、床版全面打ち替えにいたる事例が多く見受 けられる. 道路橋の健全度調査の中に、橋面上に重錘や砂 袋を落下させて衝撃振動波形を計測し、その波形から固有 振動数を求め劣化診断を行う方法がある. 本論文では、そ れらの衝撃振動試験を想定して、劣化した鉄筋コンクリー ト床版(以下、RC 床版)を有する単純鋼鈑桁橋を三層板帯 板要素などでモデル化し、モード解析法を用いて衝撃応答 解析を行う. 本手法を用いて RC 床版劣化部の深さ変化や 剛性変化が、橋全体の固有振動数あるいはR C床版の固有 振動数にどのような影響を与えるか検討する.

2. 解析理論1)

鋼桁とRC床版から成る既設鋼鈑桁橋を、いくつかの帯板要素の集合体と考え動的解析を行う.3次元動的弾性論に基づきガラーキン法を用いて三層板帯板要素の運動方程式を誘導する.衝撃応答解析にあたっては、モード解析法を適用する.解析に用いる長さlの三層板帯板要素は、図-1に示すように、x、y、z 方向の節線力を T_i , S_i , Q_i (i=r,r+1)とし、x 軸周りの節線モーメントを M_i (i=r,r+1)とする.

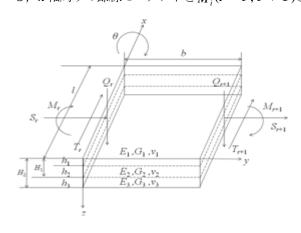


図-1 三層板帯板要素の力

3. 解析モデルと解析条件

解析モデルとして3本主桁を有する単純鋼鈑桁橋(支間長:18.17m,幅員:6m,桁高:1.0m)を取り上げ,図-2に示すように鋼桁部分を一層板帯板要素,劣化した部分と健全な部分に分けられるRC床版を二層板帯板要素,主桁上のRC床版は三層板帯板要素によりモデル化した.図中の番号は節線番号を表し,総要素数,総節線数は,それぞれ27要素,28節線となる.RC床版上に打撃力P(本論文では打撃波形は矩形パルス)を与えて,着目点の加速度応答を計算し,得られた加速度応答曲線をFFT解析することにより卓越固有振動数を求めた.RC床版上部の劣化が進展する場合を想定し,二層目のヤング係数を一定とし,一層目のヤング係数を低下させる計算を行った.数値計算に用いた値は以下の通りである.

 $E_2=3.0\times10^6$ KN/m², P=1tf

 $E_1/E_2=1/2$, 1/5, 1/10, 1/30, 1/50, 1/100, 0

 $v_1, v_2 = 0.167, \rho_1, \rho_2 = 2.448 \text{ KN} \cdot \sec^2/\text{m}^4, v_3 = 0.3,$

 $\rho_3 = 8.010 \text{KN} \cdot \text{sec}^2/\text{m}^4$, $h_1/(h_1 + h_2) = 5/18$, $h_1 = 0.05m$, $h_2 = 0.13m$.

つぎに、ヤング係数比を固定し、一層目と二層目の板厚 比を変化させ劣化が深さ方向に進展していくことを想定し た計算も行った。その場合の数値は、以下の通りである。

 $E_1/E_2=1/5$, $h_1/(h_1+h_2)=1/11,5/18,1/2$

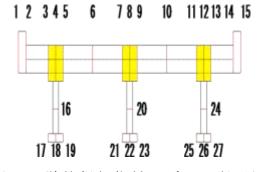


図-2 単純鋼鈑桁橋モデルの断面図

キーワード:三層板有限帯板法 衝撃応答解析 劣化診断

連絡先:〒020-8551 岩手県盛岡市上田 4-3-5 岩手大学工学部 社会環境工学科 TEL.FAX:019-621-6436

4. 解析結果と考察

単純鋼鈑桁橋のRC床版が健全である場合を想定し、図-2に示す6節線の支間中央に打撃力Pを与えた計算を行った.打撃点において得られたフーリエスペクトル波形を図-3に示す.0~25Hzまで多くの卓越周波数が見られるが、20Hzと40Hz付近にも大きなピークを確認した.固有解析値と本計算値が一致することが理想であるが、打撃点の加速度波形から得られた本卓越周波数は、打撃時間などの影響を受けて固有解析値とすべて一致しなかった.

次に、図-2 に示す耳桁直上の 4 節線の支間中央に打撃力 P を作用させ計算を行った。解析する着目点は図-3 の場合と変わらず床版中央点の 6 節線である。図-4 に示すように、ピークは $0\sim5$ Hz の間にピークが見られたが、5 Hz 以降には大きな卓越周波数は認められなかった。ただし、20Hz と 40Hz 付近に小さな卓越が確認出来た。特に、40Hz 付近のピークは床版の局部振動に起因するものと推測できる。

続いて、RC床版上部の劣化が進展する場合を想定し、 二層目のヤング係数を一定とし、一層目のヤング係数 を低下させる計算を行った比較結果を図-5 に示す. また、図-6は、ヤング係数比を固定し、一層目と二層 目の板厚比を変化させ劣化が深さ方向に進展していく 場合の計算結果である. 打撃点および解析着目点は、 いずれも RC 床板の 6 節線の支間中央となっている. 図-5、6 より、RC 床版に材料的劣化と劣化範囲の拡 大が進むと、健全な場合と比べてピークが左に移動す ることがわかった.

5. まとめ

本研究により実橋 RC 床版の固有振動数による劣化 診断は、高次の振動モードに着目すればよいことがわ かった. また、衝撃振動試験を実施する前に、本手法 を用いて様々な条件で解析を行うことにより、求めた い固有振動数を励起させる打撃点、打撃条件や計測機 器の設置場所を推定することができるようになった.

参考文献

1) 出戸秀明、岩崎正二、新銀武、丸山泰孝:積雪寒冷 地の塩化物供給を考慮した RC 床版余寿命診断技術の 提案、土木学会編構造工学論文集、Vol.56A、

pp.1227-1238、2010.3

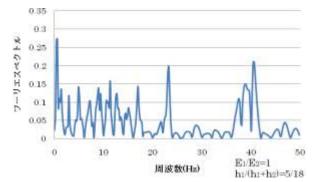


図-3 打撃点,着目点(6 節線)における

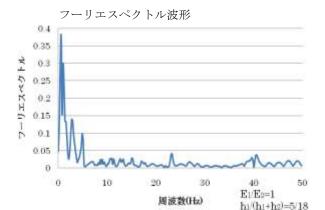


図-4 打撃点(4節線) 着目点(6節線)における フーリエスペクトル波形

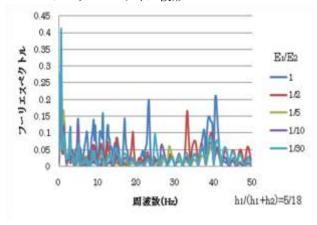


図-5 一層目のヤング係数の変化による着目点(6 節線) のフーリエスペクトル波形の比較

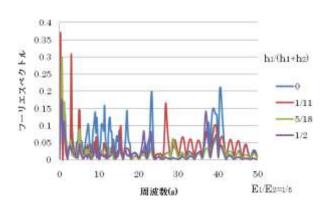


図-6 板厚比の変化による着目点(6 節線) のフーリエスペクトル波形の比較