衝撃弾性波法を用いた PC 桁橋シース内グラウト未充填探査測定

東北学院大学大学院工学研究科土木工学専攻 学生会員 O相良 雄三 東北学院大学工学部環境建設工学科准教授 正会員 李 相勲

1. はじめに

中径間橋梁の PC 桁橋では、一般的に桁内部に PC 鋼線 を通したシースを配置しており、このシース内にグラウ トを充填することでシースとコンクリートを間接的に付 着させている.またグラウトを充填することで、シース 内に水が浸水し生じる、 PC 鋼線の腐食や破断、凍結融 解作用によるコンクリートの亀裂等を防ぐ働きもある. グラウトの充填においてシースと PC 鋼線の間が狭いた め、グラウト充填が容易ではない.また、その作業は、 シースの内部が見えないため、施工時に充填・未充填の 判断が容易ではない.そのため、PC 橋では、早期に未充 填箇所を把握することが維持管理上最も重要な要素であ る.PC 橋のシース内グラウト未充填探査測定において非 破壊検査である衝撃弾性波法が注目されている.

本測定では、衝撃弾性波法を用いて、実構造物の PC 桁橋におけるゲラウト未充填箇所の探査測定を行い、そ の分析結果より未充填を推定した.また確認のため未充 填と推定された箇所について穿孔し、工業用内視鏡(fiber scope)を用いてシース内部を撮影した.

2. 測定概要

2.1 測定対象

本測定の対象の PC 橋梁の側面図と断面図を図-1に 示す.本橋梁には 13本のシース(Φ48mm)が配置され ており,各シースには,5mmの PC 鋼線が 12本入って いる.橋梁の一部に発生している亀裂を中心にシースに 位置とグラウトの未充填箇所探査測定を行った.

2.2 測定方法

衝撃弾性波法を行う前に橋梁腹部の側面に対しレー ダー式鉄筋探査機を用いて,鉄筋とシースの位置を調査 した.その結果を図-2に示す.3枚の探査記録を比較 すると,鉄筋の位置は固定されているものの,傾斜配置 されているシースは移動していることがわかる.次に伝 播速度を求めるために,シースの配置されていない位置 でキャリブレーション測定を行った.そして,図-1に 示すように定めた3箇所に対し,左からa(横5箇所× 縦3箇所の15箇所),b(横6箇所×縦3箇所の18箇 所),c(横5箇所×縦3箇所の15箇所)として測定を 行った.例として測定点cの測定箇所の位置を写真-1 に示す.

写真一1 測定点 c

キーワード:非破壊検査 衝撃弾性波法 グラウト充填 PC 桁橋 連絡先:東北学院大学工学部環境建設工学科 李 相勲 (E-mail: <u>leesh@tjcc.tohoku-gakuin.ac.jp</u>)

レーダー式鉄筋探査機による探査結果 || = 2

3. 測定結果

グラウト未充填探査測定の前に, 各測定点付近で行っ たキャリブレーション測定における各測定点の結果は類 似しており, 平均伝播速度は 3000m/s であった. ここで は、図-1で示した3箇所の測定点の中から測定点 c に ついて要約する. 図-3に測定点 cの11箇所目と12箇 所目のフーリエスペクトルを示す. インパクターとして 比較的小さい鋼球(8mm)を使用したため高周波数域に 卓越が見られるが、腹部厚さの180mmに該当する共振周 波数(8000Hz付近)にも見られる.一方高周波数域にお いては、整数倍のみの共振周波数(16000Hz 付近)の卓 越があれば空隙がないことを表すが、図-3の測定点11 を見ると 20000Hz 付近で卓越が見られる. これを可視化 するため, 各測定箇所に対して高周波数ピークと共振周 波数の2倍との差を等高線で表したものを図-4に示す. 中心部でその差が大きく現れているのは、中心部におい てシースと空洞の存在を表しているからである.

4. 穿孔

各測定によって推定された空洞の位置を確認するため, 穿孔後工業用内視鏡(fiber scope)による撮影を行った. 穿孔位置は11箇所目の測定位置(図-3の左側)付近で あり, 6mm 程度の深さでシースが発見された. 写真-2 に工業用内視鏡で撮影した内部を示す. PC 鋼線とシース の姿が鮮明に現れていて,円で表した部分が未充填箇所 である. PC 鋼線が腐食された跡やシース内部に水が溜ま った跡は発見されなくこの未充填は断続的と判断した.

5. 結論

衝撃弾性波法を用いた PC 桁橋グラウト未充填箇所探 査測定において、シースの位置はレーダー式鉄筋探査機 を使用して推定することで時間を節約することができた。 またグラウト未充填の位置は高周波数ピークと厚さを現 2. 極檀邦夫, 境友昭 (2002). "衝撃弾性波法による PC 橋 わす共振周波数の2倍数周波数との差でその推定が可能 であった.

写真-2 穿孔内部

謝辞

本研究は 2009 年度日本東北建設協会の技術開発支援 制度による研究費で実施された.ご支援頂いた協会に感 謝申し上げます.

参考文献

- 1. 富田芳男, 岩波光保, 大即信明 (2000). "衝擊弾性波法 を用いた PC フレッシュグラウトの充填性評価に関す る研究"日本土木学会論文集, No.648, V-47, pp.127-135
- 梁シース管グラウトの充填度合の測定"日本コンクリ ート工学年次論文集, Vol.24, No.1, pp.1557-1562