岩手大学 学生会員 〇下屋敷信,正会員 小笠原敏記,堺茂樹

1. はじめに

一般に、風からのエネルギー供給によって波が発 達し、平衡状態に達すると白波を伴った砕波が発生 して、海面は乱れを伴った気液混合境界層となる. その境界層内の正確な流速を得ることは、高潮の予 測や波浪推算の精度向上において非常に重要である. 現地観測の場合、気象状況に依存した不確定要素が 多いため、観測データの整合性が求められる.一方、 風洞水槽を用いた実験の場合、戻り流れの扱いに難 点があるものの、一定条件下での風波海面下の現象 を断面的に捕らえることができる.その流速の計測 には、非接触型の PIV (Particle Image Velocimetry) 手法が主流であるが、気液境界混合層およびその直 下の高精度な流速値を得るためには、風波画像に対 する適切なダイナミックレンジの設定が要求される.

そこで本研究では,弱風から強風までの風波画像 情報を基に,PIV 手法を用いた風波下の流速分布の 最適な解析条件を検討する.特に,ダイナミックレ ンジの設定が正確な流速分布の取得を支配すること から,風速条件に適した最適条件を明確にする.

2. PIV 手法の概要

PIV 解析には、局所的な輝度値パターンの類似度 を相互相関で評価する直接相互相関法を用いる (PIV ハンドブック参照). その測定原理の概要は次の通り である.最初に、微小時間 Δt だけ異なる 2 時刻の画 像について、第 1 画像中の検査領域の輝度値パター ンが、第 2 画像中のどの位置に移動したのかを次式 の相互相関係数 R_{fg}を用いて評価する.

$$R_{fg} = \frac{\sum_{i=1}^{N} \sum_{j=1}^{N} \{f(X_i, Y_j) - f_m\} \{g(X_i + \Delta X, Y_j + \Delta Y) - g_m\}}{\sqrt{\sum_{i=1}^{N} \sum_{j=1}^{N} \{f(X_i, Y_j) - f_m\}^2 \sum_{i=1}^{N} \sum_{j=1}^{N} \{g(X_i + \Delta X, Y_j + \Delta Y) - g_m\}^2}}$$
(1)

ここで、 f_m 、 g_m は第1、2 画像における $N \times N$ の検査 領域内の輝度値パターン f、gの平均値である。本研 究では、第1 画像の検査領域 N_f を 33pixel、第2 画像 の探査領域 *N_s*を 55,65 および 99 の 3 通りとし,どの程度の計測精度が得られるのかを検討した.

PIV 解析に用いる風波画像は、二重床風洞水槽 (H1.0m×B0.4m×L15.4m;岐阜大学所有、上段水路水 深 h=30cm)内で風速 U_r=6.7, 10.4 および 15.1m/s の 3 通りの条件下の基で、高速度ビデオカメラ(撮影速 度 60fps; U_r=6.7, 10.4m/s, 125fps; U_r=15.1m/s,空 間解像度 480×480pixel)より撮影された定常状態の ものである(小笠原ら, 2002).各風速の撮影時間は 34.1 秒間であるが、本解析では有義波周期 1 周期分 に相当する時間とした.

3. ダイナミックレンジの比較検討

2時刻間における輝度値パターンの誤対応は、大き な誤差を含んだ速度ベクトルを算出することになる ため、誤ベクトルの判定条件を次のように設定した.

- 水面の流速が風速の3%程度と言われることから、風速の5%以上の速度ベクトル
- ② 流体運動の連続性から検査領域の周り8近傍の 平均速度ベクトルの2倍以上の速度ベクトル

図-1 は、上述の誤ベクトル判定条件の有無による 風速 U_r=6.7m/s および 15.1m/s での速度ベクトル分布 を比較したものである.なお、探査領域 N_s=55 の解 析結果である.非砕波条件の U_r=6.7m/s では、水面近 傍に見られる風向きとは逆向きの速度ベクトルが誤 ベクトル判定条件によって除去される.一方、白波 砕波条件の U_r=15.1m/s では、処理される誤ベクトル (図中の丸で囲まれた箇所)もあるが、白波直下の 異常ベクトルが適切に除去されないことがわかる.

図-2 は、ダイナミックレンジに相当する探査領域 N_sを3通りに変化させたときの誤ベクトルの割合を 比較したものである.ただし、図-1 で見られる気流 側の誤ベクトルは含まない.探査領域が大きくなる に連れて、誤ベクトルの発生する割合が高くなるこ とがわかる.次に、風速 U_r=10.4m/s および 15.1m/s における各探査領域 N_sでの平均水平流速 u の鉛直分

風波, PIV, ダイナミックレンジ, 直接相互相関法 岩手県盛岡市上田 4-3-5 岩手大学工学部社会環境工学科・019-621-6448・019-652-6048

図-2 各ダイナミックレンジにおける誤ベクトルの割合

平均水平流速の鉛直分布

布を図-3に示す.なお,静水面(z=0)上向きを正と し, uの値は各鉛直位置 z における水平方向の速度ベ クトルの平均値である.また,図中の二重丸は風速 の3%の値を表す.水面から10cm以深では,uの値 に差は見られない.それ以浅になると,N_sが大きく なるに連れて uの値も増大する.さらに,N_sに関わ らず水面近傍の速度は小さくなることがわかる.以 上より, 誤ベクトルの発生を抑えるためには,風速 に依らず検査領域の 1.5 倍程度の探査領域を適用す れば良いが,速度が過小評価されることがわかる. また,元画像からも確認できるが,強風下ではトレ ーサが伸びており,弱風下でも海面下にトレーサが いない層が存在するため,速度が適切に算出できな

いものと推察される.これらの問題は,画像の取得 の工夫および解析手法の改善が必要と言える.

4. 背景除去の適用

ここでは、150 枚の画像から各画素の最小輝度値を 求めて作成した背景画像(図-4(a))を用いて、元画 像への背景除去の有無によるベクトル分布の比較を 図-4(d)および(e)に示す.輝度値パターンのムラが低 減されるため、検出速度ベクトルの精度向上に必要 な前処理の一手法と言える.

謝辞:本研究は、科学研究費補助金若手研究(B)によ る成果であることをここに付記する.

参考文献

PIV ハンドブック,可視化情報学会編,森北出版, pp.69-71.

小笠原敏記・安田孝志・武田真典・大澤輝夫(2002), 砕波を伴う強風下の吹送流の流速の鉛直分布と全流量 について,海岸工学論文集,第49巻,pp.321-325.