カルサイト双晶変形の力学モデルに関する基礎的研究

1. はじめに

日本では地震による被害が多いため、耐震のための技術 が発展しているといえる.しかし構造物が最終的にどのよ うな応力状態になって壊れたのか,地震によってどのよう な応力状態になるのか実際に測定することはできていない. なぜなら,物体中の応力状態を知るにはその物体がどの程 度ひずんでいるのか測定する必要があるが,ひずみを測る 時点ですでにその物体は弾性回復してしまっているからで ある.しかし,様々な強度の鉱物からなる岩石全体が弾性 変形するときに,一部の弱く微小な鉱物が塑性変形して微 小な応力計の役割を担うならば,試料全体がひずみを解消 した後でも最大応力を推定し得る.

本研究では,応力履歴を残しつつ,微小な応力計の役割 をする鉱物としてカルサイトに着目した.カルサイトは モース硬度3のやわらかい鉱物で,天然では蝶型双晶や矢 筈型双晶等の"双晶"という形状で発掘されることが多い. カルサイト双晶とは,結晶方向の違うカルサイト同士が結 晶面を共有している状態であるが,一つのカルサイト同士が結 にある方向から圧力を加えていくと,応力を解放するよう にカルサイト結晶中に双晶ができる.このカルサイト変形 双晶の発生する仕組みやそのときの応力状態が解明できれ ば,カルサイトを応力計として用いることができるはずで ある.本研究ではそのための予備的検討として,カルサイ ト双晶変形の幾何学的性質を調べ,応力を与えたときの力 学的挙動について熱力学的な枠組みでのモデル化を試みる.

2. カルサイト双晶変形の幾何学

双晶変形 双晶変形の概念図を図-2 に示す.双晶変形とは,ある結晶構造を持つ物体が応力を印加されたとき,そ

図-1 カルサイトの変形双晶

図-3 (a) 六方晶; (b) 偽立方晶; (c) 六方晶と偽立方晶との対応.

の応力をリラックスするために,結晶構造は同じであるが 配向の異なる "双晶 "を生じる変形のことを言う.図-2で は,双晶面である K1面を境にして,母相格子と鏡面対称 の関係にある双晶格子の領域が生じている.

カルサイトの結晶構造 カルサイトの構造を図-3 に示す. カルサイトは (a) のような六方晶を持つことが一般に知ら れているが,本研究では六方晶ではなく (b) のような偽立 方晶(菱面体晶)を持つものであるとしてカルサイトを扱 うことにする.六方晶と偽立方晶の対応関係を示したのが (c) である.

カルサイトで起こる双晶変形 カルサイトで起こる主要な 双晶変形にはr双晶とe双晶がある.このうちr双晶は地 中奥深くの高温・高圧下で発生しうるが,本研究ではコン クリート構造物中の常温・常圧下での利用を目的としてい るため,r双晶については考慮しない.一方,e双晶は常 温・常圧下でも発生する.e双晶の変形図を図-4に示す.

図-4 (a) 変形前(typeI); (b)typeII; (c)typeIII; (d)typeIV.

表-1 各ドメイン状態での自発ひずみ $\bar{\varepsilon}_{\mathrm{t}}^{(\mathrm{a})}$ $(a = \mathrm{I}, \mathrm{II}, \mathrm{III}, \mathrm{IV})$

3. カルサイト双晶変形の熱力学モデル

カルサイトの初期状態(母相)を type I とすると, e 双 晶の発生する面は互いに等価な3種類があり,それぞれを type II, type III, type IV とする.これらの双晶の, type I からのひずみを表1に示す.表1のひずみ量を用いてカル サイト双晶変形を定式化する.母相からの変形についての み考えるため, $X^{(p1)}(bm\sigma)$ (p = 2, 3, 4)を双晶変形駆動 力, $\psi_t^{(a)}$ を活性化エネルギーとして,

 $X^{(p1)}\left(\pmb{\sigma}
ight):=\pmb{\sigma}:ar{\pmb{arepsilon}}_{
m t}^{(p)}-ar{\pmb{\psi}}_{
m t}^{(p)}~(p=2,\,3,\,4)$ とする .

4. 計算例

x軸圧縮およびx - yせん断応力を印加するの条件で,散逸エネルギー σ : $\bar{\varepsilon}_{rmt}^{(p)}$ を求める解析を行った. 横軸を応力 σ (N/mm²),縦軸を散逸エネルギー σ : $\bar{\varepsilon}_{t}^{(p)}(p = 2, 3, 4)$ (J),各双晶 typeを発生させる駆動力を $X^{(p1)}(\sigma)(p = 2, 3, 4)$ (J)として,結果を図-5と図-6に示す.

x軸圧縮 カルサイトモデルをx軸で圧縮した場合,図-5 のように type III を発生させる $X^{(31)}$ の値が最も高く, type II, type IV を発生させる $X^{(21)}$, $X^{(41)}$ の値が等しい という結果が得られた.この結果は,y - z平面に各双晶 面を投影するとき, type II に対応する双晶面と type IV に 対応する双晶面が等価で, type III に対応する双晶面の面 積が他の2面と比べて大きいという事実と合致し得る.

x-y せん断応力 カルサイトモデルに x-y せん断応力を 印加した場合,図-6のように type IV を発生させる $X^{(41)}$ の値が最も高く, $X^{(21)}$, $X^{(31)}$ ともに正の値を持たない ため, type II と type III は発生し得ないという結果が得ら れた.この結果は,c 軸方向に伸びるという e 双晶の機械 的性質を考慮すると,x-y せん断応力によってc 軸方向 に伸びるのは type IV のみであるという事実と整合する.

5. 終わりに

カルサイト双晶変形についての熱力学モデルを構築して, 各応力状態で発生し得る各双晶 type を判定することがで きた.今後の展望としては,カルサイトで発生した変形双 晶から,応力状態を逆解析することが挙げられる.

参考文献

- S.Bueble, W.W.Schmahl: Mechanical twinning in calcite considered with the concept of ferroelasticity, Phys Chem Minerals, No.26, pp.668-672, 1999.
- 2) Aizu K: Possible species of "ferroelastic" crystals and of simultaneously ferroelastic and ferroelastic crystals , J Phys Soc Japan ,No.27,pp.387-596 , 1969.