こ道橋新設工事における掘削土留工の施工について

東日本旅客鉄道(株) 東北工事事務所 正会員 櫻庭祐輔 東日本旅客鉄道(株) 東北工事事務所 村上安二

はじめに

本工事は HEP & JES 工法により鉄道営業線直下にボックスカルバートを構築するための仮土留工事である。土留鋼矢板の打込は、ウォータージェット併用油圧圧入工法により着手したが、固結シルト層の圧入が困難となった。対策として現場にて試験施工を行い、本工事に適した工法について再検討した。その内容について報告する。

2. 鋼矢板打込方法の検討

本工事では工事箇所が住宅地に近接することから、鋼矢板の打込は騒音・振動を抑えるため、サイレントパイラーによるウォータージェット併用油圧圧入工法を選定し、施工枚数は7枚/日で計画していた。

圧入は GL-15m までは順調に進んだが、それ以降は圧入速度が低下し、打込が不能となった。地質柱状図(図-1)によると、GL-15m 地点は N 値40 程度の固結シルト層が約 2m あり、これが速度低下及び打込不能の原因として考えられた。そこで、打込可能な工法の選定及び施工速度の検討を目的に、以下に示す試験施工を実施した。

案 1.ウォータージェット併用油圧パイプロ工法

バイブロの使用により騒音・振動の増加が見込まれるため、発生する騒音・振動が環境基準(青

森県条例騒音 85dB 以下、振動 75dB 以下)を満た すか検証する。(写真-1)

案 2. 増強ウォータジェット併用油圧圧入工法

ウォータージェットの性能を当初計画の7000 mm から 9000 mm に変更し、圧入速度を検証する。(写真-2)

試験施工箇所を図-2 に、試験施工フローを図-3 に示す。測定する項目は、打込速度、使用水量、騒音・振動とした。なお、案 2 については、ウォータージェットの性能を変更しても騒音・振動に与える影響が些少であると考え計測を省略した。

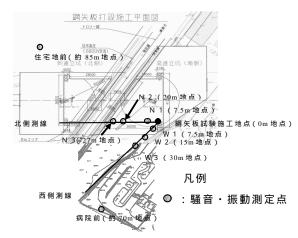


図-2 施工試験箇所位置図

写真-1 ウォータージェット併用油圧パイプロ工法(案1)

写真-2 増強ウォータージェット併 用油圧圧入工法(案2)

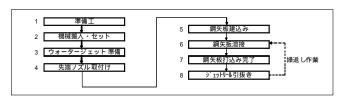


図-3 試験施工フロー

キーワード:ウォータージェット併用油圧圧入工法 ウォータージェット併用油圧バイブロ工法 連絡先:〒980 8580 宮城県仙台市青葉区五橋1-1-1 TEL022-266-3713 FAX022-268-6489

3. 試験結果

3.1 打込速度及び使用水量

試験結果を表-1 に示す。打込時間は約 13~28 分であり、両案とも施工可能である。打込時間に ばらつきが生じた理由としては、鋼矢板の継手同 士の摩擦や、重機操作が打込速度にばらつきを与 えた原因として考えられる。

ウォータージェットの水使用量は、 $9 \sim 21 \text{m}^3$ で あった。水の使用については、作業ヤード面積も 考慮した結果、発進・到達立坑ともに貯水槽 (25m³/個)を、6個設置することで計画している。

1枚当たりの使用水量を 21m³ とすると 1 日あた り7枚施工でき、溶接時間を含めた1枚当りの打 込時間は約1時間であったことから、当初計画の 7枚/日を満たす数量で施工可能であることが分 かった。

工法	試験No	1枚目打設 ①	現場溶接 (2枚目打設) ②	2枚目打設 ③	승計 ①+②+③	使用水量(m³)	打設時間 (23mあたり) ①+③
案1.ウォータージェット併 用油圧パイプロエ法	No.1	6分30秒	1時間5分	9分30秒	1時間31分	103	16分00秒
案2.増強ウォータージェッ ト併用油圧圧入工法	No.2	7分00秒	36分30秒	21分00秒	49分15秒	21.7	28分00秒
	No.3	6分30秒	30分30秒	9分00秒	46分00秒	12,7	15分30秒
	No.4 [®]				13分30秒	9.4	13分30秒

耒 1 試驗施工結里

3.2 騒音・振動測定結果

騒音・振動の測定結果を表-2、表-3に示す。測 定を行ったのは、 ~ 導杭、 サイレントパイ ラー設置用(反力架台用)鋼矢板、 ~ 鋼矢板 打設(本施工)に区分し測定を行った。

なお、バイブロの周波数は当初 30Hz に設定し ていたが、打設が滞ったため の導杭打設の途中 から 60Hz に変更し、それ以降は 60Hz で行った。 また、試験打ちは継矢板にて打設するため、 の 1 枚目 (0~11m) と の2 枚目 (12~23m) に分 けて測定を行った。

(1) 騒音測定結果

騒音が環境基準をクリアした地点は、北側側線 で 20mの地点、西側側線では 30m の地点からで あった。本施工では住宅地から30m以内での施工 が必要となるため、案1による施工は環境基準値 を満足出来ないこととなる。

(2) 振動測定結果

振動が最も大きいのは、導杭打ち(周波数変更 後:60Hz)であり、鋼矢板打設に比べ導杭(H形 鋼)打設の振動が大きい結果となった。環境基準 をクリアした地点は北側測線で 27m、西側測線で 15m の地点であった。

本施工では住宅地から 27m 以内での施工とな るため、案1による施工は環境基準値を満足出来 ないこととなる。

表-2 騒音測定結果(騒音レベル:dB)

方向· 地点名 距離	北側測線				西側測線				
	N1	N2	N3	住宅地前	W1	W2	WЗ	病院前	
区分	7.5 m	20m	27m	85 m	7.5 m	15m	30m	70m	
①導杭(H鋼) 打ち (1本目 周波数変更前:30Hz)	87	78	75	57	85	81	77	64	
②導杭(H鋼)打ち (1本目 周波数変更後60Hz)	82	74	71	56	80	76	70	60	
③ 導杭(H鋼) 打ち (2本目)	81	76	73	-	82	78	75	61	
④鋼矢板打ち(サイレントバイラー設置用)	89	81	78	58	89	84	78	70	
⑤綱矢板試験打ち (打ち込み深度;0~11m)	89	78	75	56	88	78	73	65	
®鋼矢板試験打ち (打込み深度;11~23m)	95	85	81	2	96	86	79	71	

注1)氏象制以上引は、地上争においる練自になっただ。 注2)距離は打込み地点からのおおよその値を示す。 注3)色つき部分は「特定建設作業に係る規則基準85dB」を超える地点を示す。

表-3 振動測定結果(騒音レベル:dB)

方向· 地点名 距離	北側測線				西側測線			
	N1	N2	N3	住宅地前	W1	W2	WЗ	住宅地前
区分	7.5m	20m	27m	85m	7.5 m	15m	30m	70m
① 導杭(H綱) 打ち (1本目 周波数変更前30Hz)	83	72	68	48	83	77	63	46
② 導杭(H鋼) 打ち (1本目 周波数変更後:60Hz)	88	80	77	52	92	86	74	56
③導杭(H鋼)打ち (2本目)	82	69	69	-	79	75	58	47
④鋼矢板打ち(サイレントバイラー設置用)	68	55	51	38	65	61	57	36
⑤ 鋼矢板試験打ち (打ち込み深度; 0~11 m)	72	56	52	39	64	60	57	37
⑤鋼矢板試験打ち (打込み深度;11~23m)	74	65	58	-	71	69	60	53

注1) 民家前の「-」は、他工事における騒音により欠測。 注2) 距離は打込み地点からのおおよその値を示す。 注3) 色つき部分は「特定建設作業に係る規則基準75dBJを超える地点を示す。

4. まとめ

今回の試験施工から得られた結果は以下の通 りである。

両案とも固結シルト層での鋼矢板打込が可能

案1を採用した場合、騒音・振動に対して環境 基準を満足できない箇所が発生する。

案2の打込速度は、案1と同等であり、かつ当 初計画の日当たり施工枚数を満足できる。

従って、打込速度が計画を満足しておりかつ周 辺環境への影響が少ない案2を採用した。今後は 本施工にて圧入速度の推移を引き続き計測し、施

工管理してゆく。 今回の報告が今 後同様に行われ る工事において 参考になれば幸 いである。

写真-3 工事現況 (2009.1 現在)