1. はじめに 津波災害の諸実態の解明,建物の耐力 評価や設計などにおいて、氾濫水深や氾濫流速を知る ことが必要である. 氾濫水深は事後の痕跡調査で把握 することができるが, 氾濫流速に関しては痕跡調査だ けではわからない. そこで、松冨・首藤1)は津波氾濫域 において、建物などに氾濫流が作用する面(前面)と その背面での氾濫痕跡に基づく浸水深を測定し、それ らを用いた簡易な氾濫流速推定法を提案した. その推 定式は次式である.

 $u = C_v(x, y, z, \lambda, \cdots) \sqrt{2g(h_f - h_r)} \quad (1)$

ここで、 C_x は流速係数、()内のxは建物などの大きさ、 vは形状, zは建物などに対する氾濫流の流向, λ は建 物などの配置間隔(開度), gは重力加速度, $h_f \geq h_r$ は それぞれ建物の前面と背面での浸水深である.

しかし、この推定式の利用のためには建物などの水 際の浸水深分布について検討しておく必要がある.ま た,図-1のような小山に適用できるか不明である.

そこで、本研究は、水理実験を行い、建物などを 想定した障害物の水際の浸水深分布などを検討し, 障害物形状や流れ場に応じた流速係数 C, を評価す ることを目的とする.

2. 水理実験 実験水路の概略などを図-2 に示す. 水路は幅 0.3 m, 全長 12.0 m の両面ガラス張り鋼製矩形 水路と幅 1.0 m, 全長 8.0 m の塩化ビニール樹脂製矩形 水路の2種類を用いた. 模型の設置場所は幅 0.3 m の水 路では上流から 5.5 m で,幅 1.0 m の水路では実験条件

(後述)の case 1 と case 2 が上流から 4.5 m, case 3 が 4.1 m である.実験に用いた模型の種類,形状と諸元を 表-1 に示す. 模型の形状別の設置方法は, 図-3 に示す. 模型中心 (X=0 cm) とそこから±15 cm, ±30 cm の測 定横断面で水深と流速の分布を測定した.模型水際線 の水深は,角柱では前背面と側面いずれも1 cm 間隔で, 円錐と円柱では模型最上流点を起点 0°として 30° 間隔 で測定した(図-4参照).測定機器は、水深はポイント ゲージで、流速はプロペラ式流速計である.

キーワード:水理実験,氾濫流速,洪水,津波 〒010-8502 秋田市手形学園町 1-1 018-889-2363

秋田大学 学生員 〇岡本憲助 正員 松冨英夫

小山に残された津波痕跡 図-1

a) 幅 0.3m 水路

図-2 定常流実験水路の概略と測定断面位置

Square Pilla

side view

10cm

Column and

Circular Con

図-3 模型の設置方法

増刑の活粘 シキレサー

5cm

	衣⁻।	侯空の 種類, 形状の	と話元		
種類	形状	諸元(cm)	備考		
布拉	半分	W=5.0, L=10.0, 高さ5.0			
円柱	全体	W=10.0, L=10.0, 高さ10.0	水没防止のため		
田牟	半分	半径5.0, 高さ5.0			
口迎	全体	半径6.9, 高さ6.9	水没防止のため		
田柱	半分	半径5.0, 高さ5.0			
I JAT	全体	半径5.0,高さ7.5	水没防止のため		
表_2 実験条件					

	<i>B</i> (cm)	$Q(\mathrm{cm}^3/\mathrm{s})$	s	$u_0({\rm cm/s})$	$h_0(\mathrm{cm})$	F _r	備考
case1	B ₁ =100	7100	1/2900	25.9	2.75	0.5	半分·全体模型
case2		8500	1/320	38.77	2.18	0.84	半分·全体模型
case3		14700	1/127	64.62	2.27	1.37	半分·全体模型
case4	B ₂ =30	4700 (3900)	1/150 (1/150)	51.7 (48.5)	3.04 (2.66)	0.95 (0.95)	半分・全体模型
case5		4700 (4700)	1/80 (1/80)	69.3 (68.5)	2.26 (2.29)	1.47 (1.45)	全体模型のみ

実験条件については表-2 に示す. B は水路幅, Q は 流量, s は水路底面勾配, u₀ と h₀ は水路に模型が無いと きの等流流速と等流水深である.()内は円錐の全体模 型のみに対する条件である.

3. 実験結果と考察 定常流実験における推定すべき 入射氾濫流速 $u \in u_0$ としたときの流速係数 C_v の値を表 -3 に示す. C, の評価式は次式である.

> $C_v = u_0 / \sqrt{2g(h_f - h_r)}$ (2)

ここで,前面浸水深 h_f と背面浸水深 h_rは,角柱では各々 前面と背面での水際線の平均水深、円錐と円柱では 各々0°と180°での水際線水深(水位)である.

表-3 から次のことが言える. 半分模型の流速係数は 0.59~0.94, 全体模型は 0.50~0.66 であり, 半分模型に 比べて全体模型は, 値域の幅が狭い. 模型の種類別に C,を見てみると、半分模型での流速係数は、角柱は0.6 ~0.89, 円錐は0.64~0.94, 円柱は0.59~0.92で, 全体 模型では角柱は 0.52~0.66, 円錐は 0.51~0.63, 円柱は 0.50~0.63 であり、半分模型と全体模型ともに模型の種 類が違っても、その値はほぼ同じであった.よって、 流速係数の値は、本実験条件の範囲内では、 障害物の 形状(建物や小山など)にほとんど依存しないことが わかる.同じ実験条件での全体模型と半分模型の流速 係数を比較すると、(全体模型/半分模型)は約7割で あり、その差は大きい.よって、半分模型と全体模型 は別のものと考えるべきである.また、実際の現地で は独立した建物や小山(本実験での全体模型)がほと んどであり、鉛直平面に接した3次元物体(本実験で の半分模型)というのは少ないと思われる.

フルード数 F_r と開度 λ の2変数を従属変数として、流 速係数 C,の回帰式を求めた. 式(3)は全体模型に対する 回帰式である.この回帰式で算定した結果を表-3 に示 す. 式(4) は既報²⁾の半分模型に対する回帰式である. この回帰式は本研究とフルード数の定義が異なる.本 研究において新たに半分模型に対する回帰式を求めよ うとしたが、実験データのばらつきが大きく、できな かった.フルード数の定義が異なるため厳密な比較は できないが、本研究の全体模型に対する回帰式も既報 の半分模型に対する回帰式と同様、フルード数と開度 が大きくなると、流速係数が大きくなることがわかる.

5. おわりに

本研究で得られた主な結果は以下の通りである.

表-3 流速係数

a)半分模型

模型形状		λ (%)	F _r	Cv	回帰式
B=30	角柱	83	0.95	0.60	-
		83	1.45	0.89	-
	円錐	88	0.95	0.64	-
		87	1.45	0.89	-
	円柱	83	0.95	0.59	-
		83	1.45	0.89	-
	角柱	95	0.50	0.82	-
		95	0.84	0.89	-
		95	1.37	0.82	-
	円錐	96	0.50	0.79	-
B=100		96	0.84	0.94	-
		96	1.37	0.79	-
	円柱	95	0.50	0.85	-
		95	0.84	0.92	-
		95	1.37	0.77	-

b)全体模型

	模型形状		λ (%)	F _r	Cv	回帰式	
		角柱	67	0.95	0.52	0.57	
I			67	1.45	0.65	0.60	
	P-20	円錐	65	0.95	0.51	0.57	
	B-30		64	1.47	0.63	0.60	
		円柱	67	0.95	0.50	0.57	
			67	1.45	0.63	0.60	
		角柱	90	0.50	0.66	0.57	
			90	0.84	0.58	0.61	
			90	1.37	0.63	0.64	
		円錐	91	0.50	0.54	0.57	
B=100	B=100		91	0.84	0.60	0.61	
			91	1.37	0.62	0.64	
		円柱	90	0.50	0.54	0.57	
			90	0.84	0.60	0.61	
		90	1.37	0.62	0.64		
全	体模型は	こおける	回帰式	$C_V = 0.21 F_r^{0.12} \lambda^{0.23} $ (
艮	既報の回帰式(半分模型)			$C_{\nu} = 0.27 F_{\nu}^{0.4} \lambda^{0.22} (4)$			

①流速係数は模型の種類にほとんど依存せず、半分 模型では 0.6~0.9, 全体模型では 0.5~0.6 となった. ま た, 流速係数の値域は全体模型の方が狭い.

②本実験結果に基づき、全体模型に対する流速係数 の回帰式を提示した.半分模型については,実験デー タのばらつきが大きかったために,回帰式を求めるこ とができなかった.

③全体模型に対する半分模型の流速係数の比(全体 模型/半分模型)は約7割で、その差は大きい、しか も、水際線の浸水深分布が異なる実験結果となってい るので、半分模型と全体模型は別のものと考えるべき である.

く参考文献>

- 1) 松冨英夫, 首藤伸夫: 津波の浸水深, 流速と家屋被害, 海岸工学論文集, 41 巻, pp.246-250, 1994.
- 2) 松冨英夫,飯塚秀則:津波の陸上流速とその簡易推定法, 海岸工学論文集, 45 巻, pp. 361-365, 1998.