東北学院大学	学生会員	佐々木一彰
東北学院大学	正会員	石川雅美
東北学院大学	正 会 員	李相勲
東北学院大学	正 会 員	遠藤孝夫

1. はじめに

劣化を生じたコンクリート構造物の安全性や、耐 久性の評価において、現在では、コアなどを採取し て材料の劣化状況を確認する手法が用いられている。 この方法は、コンクリート材料の劣化を確認する上 では、直接的で、きわめて明快であるが、構造物全 体の劣化状況を推定するためには、なるべく多くの コアを採取しなければならない。一方、構造物の安 全性の検討に際しては、設計パラメータとして構造 物全体の弾性係数がどの程度劣化しているかかが必 要となる。本研究で紹介する衝撃弾性波は、厚さ数 メートルまでのコンクリート部材の弾性係数を評価 することが可能であり、これを既設構造物に適用す ることを試みる。

2. 衝撃弾性波法の概要^{[1][2][3]}

衝撃弾性波法とは、コンクリート表面に鋼球やハ ンマー等で物理的な衝撃を与えることで弾性波を発 生させ、対象コンクリート中を伝播した弾性波をセ ンサで受信する。そして、受信し測定した弾性波よ リ、コンクリートの品質やコンクリート内部の欠陥、 位置、寸法を測定する方法である。この衝撃弾性波 法は、これまでの実構造物に対するコンクリート検 査方法と比べ、比較的容易な上、非破壊で検査を行 うことができる点が大きな利点といえる。

3. **衝撃弾性波法の原理**^{[1] [2] [3] [4]}

本研究では、衝撃弾性波法の中でインパクトエコ ー法と呼ばれる手法を主に利用した。インパクトエ コー法は、コンクリート表面に物理的衝撃を与え弾 性波を発生させ、その弾性波のうち、最も大きな変 位を持つ P 波(縦波)を利用する。P 波は、弾性波 の性質よりコンクリート表面と物性の異なる境界面 の間で反射を何度も繰り返し、その区間で共振が重 じる。これにより、周波数を分析する際に、共振周 波数と呼ばれる卓越したピークの周波数が検出され る。この時、周波数を分析するためには、コンクリ ート表面に設置していたセンサで受信した波形を周 波数スペクトルに変換する。変換の際には、高速フ ーリエ変換(FFT)を使用する。共振周波数が検出 できれば、コンクリートの厚さ、内部欠陥の位置等 を調べることができる。その際に、式(1)を用いる。

$$T = \frac{C_{p}}{2 f_{p}}$$

ここで、T:コンクリートの厚さ又は内部欠陥まで の距離(m)、C_p:P 波速度(m/s)、f_p:P 波の共振周波 数(Hz)である。

また、コンクリート中を伝播する弾性波の挙動と コンクリートの力学的性質には密接な関係あり、弾 性波の速度を式(2)のように定義できる。

$$C_{p} = \sqrt{\frac{E(1-v)}{\rho(1+v)(1-2v)}}$$
(2)

ここで、C_p:弾性波伝播速度(P 波速度) E:弾性 係数、 :ポアソン比、 :密度である。さらに、 式(2)を変形させて式(3)の形にすると、弾性係数を求 めることができる。

$$E = \rho C_{p}^{2} \frac{(1+v)(1-2v)}{(1-v)}$$
(3)

試験体の概要

試験体には、設計基準強度 24N/mm²を材齢 28 日 および材齢 56日で満足するもの2種類のコンクリー トを用いて、図.1 に示す角柱試験体と円柱供試体を 作成した。作成した試験体の一覧表を表.1、配合表 を表.2、コンクリートの物性値を表.3 に示す。コン クリートの物性値においては、材齢 51 日時のもので ある。

表.2 配合表

粗骨材の 最大寸法 (mm)	粗骨材の スランプ	水セメント比 (%)	細骨材率 (%)	単位量 (kg/m³)					
	(cm)			水	セメント	細骨材	粗骨材	AE減水剤	
材齢28日	20	8	49	40.7	155	317	731	1111	3.17
材齢56日	20	8	55	41.7	155	282	762	1111	2.82

表3	コンクロ	-トの物性値
1.5.0		

	圧縮強度 (N/mm ²)	弾性係数 (N/mm ²)	ポアソン比	密度(kg/m ³)
才齢28日	26.14	22941.95	0.20	2223.54
才齢56日	23.96	24040.16	0.18	2281.21

5. 試験方法

(1)

試験対象のコンクリート表面を金属製ハンマー又 は鋼球棒で打撃する。打撃による衝撃で弾性波が発 生し、その弾性波をコンクリート表面に設置したセ ンサで受信し、データロガに波形として記録される。 本研究では、受信センサに加速度計を用いた。また、 図.2 に弾性波の測定方法を図にしたものを示す。測 定した波形データは、周波数スペクトルに変換し分 析する。そして、式(1)、(2)、(3)を用いて弾性波速度 や弾性係数を求める。

6. 試験結果

測定した波形データより、最終的に式(3)を用いて 弾性係数を算出した結果を以下に示す。

材齢 28 日弾性係数: E = 25371.02 N/mm²

材齢 56 日弾性係数: E = 27053.17 N/mm²

この算出された弾性係数は、動弾性係数 Ed である。 また、コンクリートの物性値として表.3 に示した弾 性係数は、圧縮強度試験から算出した静弾性係数 E。 である。動弾性係数と静弾性係数を比較したグラフ を図.3~5に示す。グラフ上の数値は、動弾性係数と 静弾性係数の比(E₄/E₆)である。

図.3 E_dと E_cの比較(材齢28日角柱試験体)

図.4 E_dと E_cの比較(材齢 56 日角柱試験体)

図.5 Eaと Eaの比較(円柱供験体)

7. 実構造物での試行試験および結果

実構造物に対して本研究の手法が適用できるかを 試みた。図.6 に示すL型擁壁の小型モデルの構造物 で試験を行った。図.6 には、L 型擁壁断面の配筋図 も示す。図.6において矢印が示している点で測定を 行った。また、矢印の方向に向かって衝撃が与えら

れている。L型擁壁での試験結果は、表.4 に示す。

図.6L型擁壁図

表.4L型擁壁の試験結果

測定位置	共振周波数(Hz)	弾性波速度(m/s)	動弾性係数(N/mm ²)	E_d/E_c
No.1	4739.12	3791.30	28646.09	1.249
No.2	4745.99	3796.79	28689.45	1.251
No.3	4507.45	3605.96	25869.76	1.128
No.4	4692.08	3753.66	28037.29	1.222
No.5	888.57	3554.29	25164.00	1.097
No.6	824.23	3296.92	21625.60	0.943
No.7	844.07	3376.27	22687.68	0.989
No.8	859.07	3436.28	23589.53	1.028
No 9	845 34	3381.34	22805 78	0.994

8. 考察

円柱および角柱を用いた試験結果より、算出した 動弾性係数は静弾性係数の 1.094~1.176 倍となって いる。これは、一般にいわれている Ed/Ec の範囲の 1.1~1.15 にほぼ収まっている。したがって、本研究 に使用した試験体寸法程度であること、かつ無筋コ ンクリートの場合であれば、本研究の手法でコンク リートの弾性係数を推測できることが確かめられた。

実構造物における試験結果は、ばらつきの多い結 果となった。この結果より、本研究の手法を実構造 物に適用するためには、更なる検討が必要であると 考えられる。このような結果となった原因は、明確 に特定できないが、鉄筋の影響等であると推測され る。試験体レベルでは、無筋コンクリートでの試験 のみであるために、鉄筋の影響等がどのように作用 しているのかが判断できない。それゆえに、今後、 鉄筋の影響等がどのようなものなのかを明確にする ために、様々な試験体レベルの研究を実施する必要 がある。

【参考文献】

- 土木学会:コンクリート技術シリーズ No.61 [1] 弾性波によるコンクリートの非破壊検査に関 する委員会報告およびシンポジウム論文集、 平成16年8月3日
- 社団法 日本コンクリート工学協会:コンク [2] リート診断技術 '07 [基礎編] 2007 年 1 月 30日
- 魚本健人、加藤潔、広野進:コンクリート構 [3] 造物の耐久性診断シリーズ 5 コンクリート構 造物の非破壊検査、1990年5月22日
- Mary Sansalone, Nicholas J. Carino : Detecting [4] Delaminations in Concrete Slabs with and without Overlays Using the Impact-Echo Method, Title No.86-M18、 ACI Materials Journal / March-April 1989