障害物を過ぎる氾濫流実験 -水路幅の影響の検討ー

1. はじめに 津波災害の実態,特に氾濫流速を 推定する場合,家屋や特徴的な地形に残された痕跡か ら推定することが多い¹⁾. この推定には障害物形状や 流れ場に応じた流速係数 C_V の算定式が必要となる. 著者ら²⁾は 30cm 幅の開水路中における障害物による C_V の評価を行い,その算定式を提案した.しかし, 障害物幅と開水路幅の比(以降,開度λと呼ぶ)の水 際線や C_V へ与える影響については検討を行っていな い.一方,抗力係数については既報の研究^{3,4)}で開度 に関する理論解析や実験から定量的な結論が得られて いる.しかし,津波氾濫流のような Froude 数 F_r が大 きい流れ場($0.7 < F_r < 2.0$) での検討はまだない.

そこで、本研究は F_r の大きい流れ場を対象とした 障害物を過ぎる氾濫流の水理実験を行い、障害物の水 際線や C_V ヘ与える開水路幅の影響について検討する ことを目的とする.

2. 実験概要 水理実験は全長 8.0m, 幅 1.0m の循 環水路を用いた. 図1 に実験水路と計測機器配置の 概略を示す.水位はポイントゲージで、流速はプロペ ラ流速計による一点法で測定した.障害物模型は表1 に示すように、角柱(図中では S.P.),円柱(図中, C.),円錐(図中,C.C.)を用いた.模型の設置方法 は図2の通りである.水理量の測定縦断面は模型中 心 (X=0cm) とそこから±15cm, ±30cm とした. 模 型水際線の水深や水位は、角柱では前背面と側面いず れも1 cm 間隔で,円錐と円柱では模型最上流点を起 点 0°として 30°間隔で測定した(図2参照).また, 実験条件については表2に示す.それに加えて、本 実験結果と比較するものとして、以前著者らが行った 実験の条件(Case2)を表 2 に示す. B は水路幅, O は流量, s は水路底面勾配, um と hm は水路に模型が 無いときの等流流速と等流水深である.()内は円錐の 全体模型のみに対する条件である.

3. 結果と考察 図-3 (a), (b)は各模型における X=-30 と 15cm における底面からの水位,流速の分布 である. (a)は X=-30cm, (b)は X=15cm での結果を示 す.図3(a)を見ると,水路幅 B₁=100cm のときは,角 柱を除いてほぼ一様な水深,流速であり,その大きさ 秋田大学 学生員〇岡本 憲助 正員 松冨 英夫

図 1 実験水路,模型(半分)配置と測定断面位置

表 1 模型の種類,形状と諸元

種類	形状	諸元(cm)	備考		
角柱	半分	W=5.0, L=10.0, 高さ5.0			
	全体	W=10.0, L=10.0, 高さ10.0	水没防止のため		
円錐	半分	半径5.0, 高さ5.0			
	全体	半径6.9, 高さ6.9	水没防止のため		
円柱	半分	半径5.0, 高さ5.0			
	全体	半径5.0, 高さ7.5	水没防止のため		

図 2 各模型の設置方法と水際線の測定間隔

表 2 実験条件

	<i>B</i> (cm)	Q (cm ³ /s)	s	$u_{\rm m}$ (cm/s)	<i>h</i> _m (cm)	F _r
case1	B ₁ =100	14700	1/127	64.62	2.27	1.37
case2	B ₂ =30	4700 (4700)	1/80 (1/80)	69.3 (68.5)	2.26 (2.29)	1.45 (1.47)

は h/h_m , u/u_m ともに 1 に近いのが判る. 図 3 (b) に おいては、各模型ともに衝撃波の影響により水位は縦 断方向に変化し、水位変化にともなって流速も変化し ている. B_1 =100cm と B_2 =30cm での結果を比較してみ ると、水深と流速はほぼ同じであることが判る.

図 4~6 は、各模型における水際線の底面からの水 位分布である.赤線と黒線で示されているものが本研 究で行った実験である.既報の結果では背面側での h/hmは 0.5 程度になったが、本実験結果では全体的に 既報の結果より小さくなり、特に円錐の全体模型と円 柱の全体模型では、背面水深は 0cm となっていた. 前面と側面においては、半分模型では開度が違っても 一様であるが、全体模型では大きな差が生じた.これ は、それぞれの図の青線で示されている実験ケースの 開度 2が 64~67%と他の実験ケースに比べて極端に 小さいからではないかと考えられる.また、半分模型 と全体模型での水際線を比較してみると、前面水深は 全体模型の方が大きくなっている.

推定すべき入射氾濫流速 *u* を *u*_m と X=15cm 地点で の流速 *u*_{r15} と X=30cm 地点での流速 *u*_{r30} としたときの 流速係数 *C*_vの値を**表 3** に示す. *C*_vの評価式は次式で ある.

$$C_v = u / \sqrt{2g(h_f - h_r)}$$

図7に示すように、水路幅 B の C_V への影響を見ると、 C_V は B に関係なく、ほぼ同じ値であった.しかし、 半分模型と全体模型では C_V の値は大きく変わり、全 体で 0.2 程度半分模型の方が大きい.これは水路壁面 による障害物周辺の流れの二次元性が拘束されるため と考えられる.しかし、これは流れの形態、 F_r や R_e に依存するため、今後更なる検討が必要と考えられる.

4. おわりに 本研究で判ったことは,

- ①流況に関しては模型の前面側で水路幅の違いによる 影響(開度の違いによる影響)を大きく受けていた が、背面側ではあまり受けていなかった。
- ②水際線に関しては、前面と背面において水路幅の違いによる影響を大きく受けていた.また、半分模型と全体模型では水際線の水深分布が大きく違っていた.
- ③*C*_v については,水路幅の違いによる影響は,それ ほど大きなものではないと考えられる.しかし,半 分模型における *C*_vと全体模型における *C*_vが大きく

		λ	<i>F</i> r	u m	u _{r15}	u 130
角柱	半分	83	1.45	0.89	0.80	0.83
		95	1.37	0.82	0.79	0.91
	全体	67	1.45	0.65	0.66	0.71
		90	1.37	0.63	0.60	0.66
円錐	半分	87	1.45	0.89	0.79	0.83
		96	1.37	0.79	0.82	0.88
	全体	64	1.47	0.63	0.64	0.73
		88	1.37	0.62	0.58	0.60
円柱	半分	83	1.45	0.89	0.80	0.83
		95	1.37	0.77	0.78	0.85
	全体	67	1.45	0.63	0.64	0.67
		90	1.37	0.62	0 59	0.63

図 7 C_vの相関関係

水路幅 100cm での実験は F_r =1.37 でしか,行ってい ないため実験条件を増やして,特に F_r =0.7 前後での 実験を行って,水路幅の影響を検討する必要がある. 半分模型での実験の妥当性についても,今後実験条件 を増やして,検討していく必要がある.

<参考文献> 1) 松富ら,海岸工学論文集,2005. 2) 松富ら,水工学論文集,2008.3) 永井ら,土木学 会論文報告集,1971.4) 秋山ら,水工学論文集, 2002.