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1.    Introduction 

Recently, many coastal areas in Japan have been seriously 

with erosion problems. Therefore, many coastal structures have 

been built and the necessary of consideration about sediment 

transport through these structures has been concerned. On this 

occasion, the predictions of coastal morphology changes were 

demanded. 

Despite the recent development of numerical models for 

predicting beach profile response, there remains a need for 

simple methods of analyzing beach erosion or accretion due to 

variable sediment, wave and water-level conditions. In such 

cases, however, engineering computations are not usually based 

on sophisticated or physical sediment transport models. Instead, 

they are based on simplified “engineering methods” of 

predicting the beach profile form based on a macroscopic 

approach without regard for the actual sediment transport 

processes, which take less time in calculation.  

In this study, the effect of wave actions to the shoreline is 

considered. For general application, the beach is then modeled 

as a linear system such that the exponential beach response is 

convolved with a time-dependent erosion- forcing function to 

obtain the time-dependent erosion response.  

2.    Shoreline response function 

 With the assumption that the beach is a linear system, 

according to laboratory experiment of David et al
1)
, the beach 

response to steady-state forcing conditions is approximately 

exponential in time. In this study, to figure out the shoreline 

response to wave action，the basic equation below has been 

applied: 
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Where a: constant value，f(t): input wave function and Ts: the 

time scale of the exponential response. The input wave function 

here was applied by Cs parameter found by Sunamura・

Horikawa
2)．Cs is defined as in the next equation:  
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Where H0：Deep water wave height，L0：Deep water wave 

length，d：grain diameter．Base on Cs value, beach profile 

erosion or deposition can be determined and the boundary 

value is known as C0=18. In this study, by applying C0-Csas 

input wave function f(t), the shoreline change in eq.(1) can then 

be rewritten as 
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From eq.(3), it is easy to recognize that when Cs=C0, the 

shoreline will be stable，in case of Cs>C0, ys(t)<0: the shoreline 

retreats and when Cs<C0, ys(t)>0: the shoreline advances. Thus, 

base on Cs parameter, this model can reflect the characteristic of 

shoreline changes, same as Sunamura・Horikawa
2)
.  

3. Shoreline response due to idealize input wave condition:  

Thought out a year, for the season which the wave is almost 

serenity, the shoreline will advance, on the contrary, for the 

season which the wave is extreme, the shoreline have tendency 

to retreat. The action of wave thought out a year seems to have 

periodicity. The ideal of this phenomenon can be thought as a 

sine function. The input periodic wave function with the above 

assumption can be presented as following equation: 
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Where TD is the duration of acting wave condition. Applying 

the input wave condition in eq.(4) into eq.(3) gives the 

following shoreline position: 
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This may be integrated directly to obtain a close-form solution 

for the shoreline position. In dimensionless form, this solution 

is then a function of just one parameter, β, as 
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 Where π-δ is the phase-lag between input wave condition 

and shoreline response, δ was defined as below: 
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And β is the ratio of the erosion or deposit time scale to the 

wave acting duration, as 
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Base on eq.(6), the predicted dimensionless shoreline changes 

due to the value of β which is an important factor in shoreline 

response.  The result of  shoreline changes in this equation is  
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Figure-1    Shoreline response due to idealize sine wave 
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Figure-2    Relationship between phase lag and ββββ 
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Figure-3 Shoreline response due to constant wave condition 

shown in Fig.1. The upper part of Fig.1 shows the 

dimensionless input wave condition (C0-Cs)/A and the lower 

part shows the dimensionless shoreline changes. Due to the 

value of input data C0-Cs, the shoreline position, will retreat or 

advance, can be verified. In addition, the behavior of shoreline 

position with different β value can also be observed. In eq.(6), 

it is easy to recognize that when t reach ∞, the shoreline 

response then will become a sine function, the same as input 

function and the bigger β value is, the larger the maximum 

dimensionless shoreline change ys
*
max and the phase-lag 

between shoreline position and input C0-Cs are (Fig.2).  

Next, assuming that the extreme wave comes, and the wave 

condition all on a sudden changes from Cs=C0 to a minus value 

of C0-Cs, for example –A0 (A0 > 0), and maintains that status for 

a period of time TE. The wave function can then be defined as 

the following equation:  
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Substitute this wave condition into eq.(3),  
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 and the solution of eq.(10) is as below: 
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The shoreline response in eq.(11) is shown in Fig.3. It can  
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Figure-4    Wave and survey data in Sendai Coast 

be found that, same as above case, for smaller value of Ts, the 

shoreline will retreat faster. For the time passes, the shoreline 

tends to become a linear and the trend of the straight line is 

defined by -aA0. 

4. Application to survey data in Sendai Coast: 

Base on 15 day-data in Sendai Coast in May 1997, the wave 

condition in this period is really high than normal and the beach 

erosion had occurred during this period. These data-set are 

shown in Fig.4. Assuming that the wave in this period is stable 

with the average value Cs=26, due to eq.(11), the unknown 

parameter have been determined. As discussing above, for big 

value of t, the trend of the shoreline is defined by -aA0, by 

applying some survey shoreline position in the end of this 

period, the unknown parameter a was determined around 0.06 

m/day, the time scale Ts was then also defined around 2.87 day 

or nearly 69 hours. Applying these values into eq.(11) give a 

reasonable shoreline response compared with survey data 

(Fig.4). Moreover, according to numerical experiment by 

David et al
1)
, the time scale for erosion process varies from 5 

hours to 80 hours depending on wave conditions. In this 

calculation, the time scale found around 69 hours. It is said that 

this computation has given a reliable time scale for erosion 

wave conditions. 

5. Conclusions: 

This analytical solution provides a simplified procedure for 

computing cross-shore beach-profile response to time-varying 

wave conditions with the assumption that the beach is a 

linear-dynamic system. From this result, the below conclusion 

have been made:  

･Beach erosion (or deposit) response is determined as a 
function of input wave conditions (Horikawa and Sunamura’s 

Cs parameter) and the characteristic exponential beach 

response to wave actions.  

・Base on erosion survey data in Sendai Coast, it is found that 

at Ts=69 hours and a=0.06m/day, the analytical solution for 

erosion shoreline response is similar to survey data. The time 

scale of this solution is also a reliable result.  

Reference 

David, L.K. and R.G. Dean （1993）: Convolution method for time-dependent 

beach-profile response, Journal of Waterway, Port, Coastal, and Ocean 

Engineering, Vol.119, No.2, pp.204-226. 

Sunamura, T. and K. Horikawa （1974）: Two-dimensional shore transformation 

due to waves, Proc. 14th Conf. Coastal Engineering, pp.920-938.  


	2052h21: II-52
	2052header1p1: 土木学会東北支部技術研究発表会（平成19年度）
	2052header1p2: 土木学会東北支部技術研究発表会（平成19年度）


