東北大学	学生員	淵上洋輔	藤井学
東北大学	正会員	○熊谷幸博	大村達夫

1. はじめに

沿岸域は栄養塩や微量金属,有機物質が陸域から高濃 度で流入し,海洋に生息する植物プランクトンや海藻群 落の成長に適した水域である¹⁾.そのため,他の水域に 比べて生物生産性が高く,豊かな生態系が形成されてい る.微量金属の中でも鉄は,一次生産者の光合成や窒素 固定に必要不可欠な金属であることが認識されている. 鉄の形態の中で還元態である第一鉄イオン(Fe(II))が生 物に利用されやすい形態であることが知られている.沿 岸域では有機第二鉄(Fe(III)L)が安定して存在するが,生 物は自らスーパーオキシドを生成し,Fe(III)L を還元して Fe(II)を生成していると考えられている.

沿岸域における Fe(II)の生成速度は、リガンドと鉄の錯 形成や解離速度により大きく影響を受ける.従って、水 中の有機リガンド濃度や有機鉄錯体の存在時間が、Fe(II) の生成量を決定する重要な因子となる.以上から、本研 究では、有機リガンドに Citrate と DFA(段戸土壌由来フ ルボ酸)を用いて、有機リガンド濃度及び有機鉄錯体の 存在時間が Fe(II)の生成に与える影響を調べた.さらに、 これらを考慮した上で、沿岸域における Fe(II)生成モデル の構築を行った.

2. 実験方法

2.1 鉄濃度の測定

フェロジン (FZ) による比色分析法と 1m セル分光器 システム(Ocean Optics)を組み合わせることで, nM オーダ ーでの Fe(II) 濃度の測定を行った. 形成された Fe(II)FZ₃ 錯体は 562nm 吸光度において測定した。光源はハロゲン タングステンランプ(LS-1),分光器は可視近赤外分光光度 計(USB 2000 VIS-NIR (Usable range: 350 nm-1000 nm)を用 いた. モニタリングプログラムは OOIBase 32 を使用した.

2.2 スーパーオキシドによる Fe(II)生成実験

有機リガンドの濃度が、スーパーオキシドによる Fe(II) の生成速度に与える影響を調べた. Fe(III)200nM と有機 リガンドを、リガンド濃度を変えてポリプロピレンチュ ーブ内で混合し、NaHCO₃ バッファー溶液と混合させ 24 時間静置させた後、海水に添加した. 5 分後、FZ と XO (Xanthine Oxidase) 溶液を、それぞれ濃度が 1mM、1.0

unit・L⁻¹ になるように海水に添加し,キサンチン溶液を 50µM となるように添加してスーパーオキシドを生成さ せ、スーパーオキシドによる Fe(II)FZ₃ 生成速度を測定した. 有機リガンドには Citrate と DFA(段戸土壌由来フルボ酸)を用いて、それぞれ濃度条件を変えて実験を行った.

2.3 有機鉄錯体の存在時間を変化させた Fe(II)生成実験

有機鉄錯体の海水中における存在時間が,スーパーオ キシドによる Fe(II)の生成速度に与える影響を調べた.有 機鉄錯体を海水に添加し,25℃の暗室において撹拌する 時間は,5分から1週間とした.それぞれの存在時間に おいて,スーパーオキシドによる Fe(II)FZ₃生成速度を測 定した.

3. 結果及び考察

3.1 Fe(II)生成速度モデルの構築

Fe(III)L から第二鉄イオン(Fe(III)')が解離し,スーパー オキシドによって Fe(II)に還元される.その複合反応おけ る Fe(II)生成速度は,以下の式(A)で表すことができる.²⁾

 $\frac{d[Fe(III]}{dt} =_{k_{eve}} \times [0, \frac{1}{2}]_{u} \times \frac{-(k_{f}[L] + k_{eve}[0, \frac{1}{2}]_{u}) + \sqrt{(k_{f}[L] + k_{eve}[0, \frac{1}{2}]_{u})^{2} + 4k_{avo}k_{d}[Fe(III)L]}}{2 \times k_{avo}}$ (A) ここで, k_{d} は有機鉄錯体の解離反応, k_{red} は Fe(III)の O₂ ··· (スーパーオキシド) よる Fe(II)への還元反応, k_{f} は錯体 の形成反応, k_{AFO} は水酸化鉄の形成反応の反応速度定数 を表す. しかしながら海水中では, Fe(III)L は金属イオン (Ca や Mg)と競合して解離を起こすため,海水中での存在 時間により Fe(III)L の濃度は減少する. さらに NOM や多 核錯体を形成する有機リガンドは、その濃度により解離 速度が依存する. よって, Fe(III)L の解離反応及び AFO の形成反応をモデルに加味することで,海水中での存在 時間とリガンド濃度を考慮した Fe(II)生成モデルを構築し た.

3.2 リガンド濃度が Fe(II)生成速度に与える影響

図1に示すように、Cirate 濃度の上昇に伴い Fe(II)生成 速度が減少した.これは、リガンド濃度が増加すると、 Fe(III)'とリガンドの錯形成速度が大きくなるためと考え られる.図1 は海水中での存在時間が5分の場合のデー タであるが、この時間スケールでの錯体解離が無視でき ると仮定した(すなわち[Fe(III)L]=200nM).さらに、 k_d は 全ての濃度において一定であると仮定した.既往の研究 で得られた反応速度定数を用いて、モデル式(A)を実験値 にフィッティングさせることで、 k_d は2.86 x 10³ s⁻¹と算出 された(表 1, Case 1). しかし,モデルではリガンドが高濃 度の場合,Fe(II)生成速度データを過大評価してしまった. 各リガンド濃度について Fe(II)生成速度データをモデル式 (A)に代入することにより ka を算出した結果,リガンド濃 度の増加により ka が減少することが示された(表 2). これ はリガンド濃度の増加により,より安定した Fe(III)L が形 成されたためと考えられる.従って,以降のモデル計算 においては各リガンド濃度で異なる ka 値を使用した.同 様の傾向が DFA についても確認された(表 2).

3.3 海水中での存在時間が Fe(II)生成速度に与える影響

Citrate についてリガンド濃度が25µMの場合における, Fe(II)生成速度の変化を図 2 に示した. 既往の研究で得ら れた反応速度定数と3.2 で算出した k_d を用いて (Case2), Fe(II)生成速度のシミュレーションを行った. その結果, 図2の点線で示したように、存在時間が短い場合、モデ ル計算からの Fe(II)生成速度の減少傾向は、実験値と比較 して緩やかであった. この違いは、短いスパンでのみか けの解離速度がモデル値よりも大きかったためと予想さ れる. そこで, Case 3 として, 水酸化鉄形成反応の速度 定数 (kAFO) を, 107 から 108 オーダーへ増加させて, 再 度フィッティングを行った. 筆者らは, 10⁸オーダーで kAFO を算出しており(未発表データ), また, kAFO が 10⁸ オーダ ーの場合も図1に示した全てのリガンド濃度における Fe(II)生成速度データと一致しており、 k_{AFO} を 10^8 オーダ 一へ増加させることは妥当であると考えている. 図2 に 示すように. k_{AFO}を1.06 x 10⁸ M⁻¹s⁻¹ (Case3)とした場合, モデルは短いスパンにおいて実験値の傾向を非常に的確 に表している. 上記と同様の方法により, Citrate の他の 濃度及び DFA の各濃度における実験結果についても、 Fe(II)生成モデルによる説明することができた.従って, 本研究において、有機リガンド濃度と存在時間を考慮し た Fe(II)生成速度モデルを構築できた.

4.まとめ

本研究で構築した Fe(II)生成速度モデル式により,リガンド濃度が異なる有機鉄錯体からの Fe(II)生成実験の実験結果,及び海水中における存在時間が異なる有機鉄錯体からの Fe(II)生成実験の結果について説明することが出来た.

謝辞

本研究の一部は、日本学術振興会科学研究費補助金基盤研究(A) 「豪州 Moreton 湾における毒素生産シアノバクテリアの増殖メ カニズムの解明」(研究代表者:大村達夫)によって行われたこと を報告する.

図1 Fe(II)生成速度のCitrare 濃度依存性

表1 反応速度定数を変化させた検証(Citrate=25µM)

Citrate=25µM

rate constant	Case1	Case2	Case3
k _d (s ⁻¹)	2.86×10 ⁻³	3.4×10 ⁻³	3.4×10 ⁻³
$k_{red1}(M^{-1} \cdot s^{-1})$	1.5×10^{8}	1.5×10^{8}	1.5×10^{8}
k_{f} (M ⁻¹ · s ⁻¹)	2.0×10 ⁵	2.0×10 ⁵	2.0×10 ⁵
$k_{AFO} (M^{-1} \cdot s^{-1})$	4.1×10^{7}	4.1×10^{7}	1.06×10 ⁸

表2 各 Citrate 及び DFA 濃度における kd

Citrate concentration	k _d	DFA concentration	k _d
(μM)	(×10 ⁻³)	(mg • L⁻¹)	(×10 ⁻³)
10	3.5	0.5	1.32
25	3.4	1.0	1.10
50	2.3	2.0	1.03
100	1.6	5.0	0.58
500	0.54	10	0.33

参考文献

- Turner, R. K. and Adger, W. N. (1996) Coastal Zone Resource Assessment Guidelines. LOICZ Reports and Studies No. 4, LOICZ-IGBP, Texel, The Netherlands, 101
- 2) Garg S., Rose A. L., Waite T. D. (2007), *Environmental Science and Technology*, (Submitted)