不飽和青葉山ロームのせん断強度に関する研究

東北大学大学院工学研究科 学生会員 〇小川 元 東北大学大学院工学研究科 正 会 員 風間基樹・渦岡良介・仙頭紀明

1. 序論

火山灰質粘性土(ローム土)は特殊土の一種であ り,在来の土質工学の手法だけでは力学的特性の把 握が困難であり,しばしば実際の現場で問題が生じ る土である.火山灰質粘性土の強度を評価する際, 自然状態では多くの場合不飽和であるため,サクシ ョンを考慮する必要がある.これまで,火山灰質粘 性土に関する研究^{1),2)}が行われているが,乱さない試 料でサクションを考慮した試験は非常に少なく,サ クションが強度に及ぼす影響についてほとんど解明 されていない.本研究では,仙台市内に分布する火 山灰質粘性土を用いて,サクションを計測できる一 軸圧縮試験を行い,サクションが乱さない・乱した 試料の圧縮強度に及ぼす影響を調べた.

2. 火山灰質粘性土試料の採取

本研究で対象とした試料は,主に宮城県の青葉山 に分布している青葉山ロームである.サンプリング を行った位置は**写真-1**に示すA,B地点である.ま た,現地におけるスェーデン式サウンディング試験

(SS 試験)の結果を図-1に示す.サンプリングは, A 地点で2回, B 地点で1回行った.2回に分けて 行った A 地点間は約2mである.それぞれの地点で 7~8本の試料をサンプリングした.サンプリングに おいて,試料が乱れないようネイルサンプラーで採 取し,モールドに入れてラップで封をして静かに運 搬した.供試体は試験直前に取り出してトリミング を行い成形した.

3. 試料の物理特性

サンプリングした乱さない試料の物理特性を表-1, 粒度分布を図-2,水分特性曲線を図-3に示す.なお, A地点は2回に分けてサンプリングを行ったのでA₁ とA₂と記述している.どの地点についても同じよう な粒径加積曲線を示すが,自然含水比w_nや乾燥密度 p_d及び水分特性曲線から,AとBは同じ青葉山ローム でも異なる物理性質を持つことがわかる.

4. 力学試験

表-2 に試験を行った試料の初期状態と実験ケー ス及び結果を示す.**表-2**において,w⁺は初期サク ションを低下させるために供試体を装置に設置後, 水分を吸収させて意図的に含水比を高めた供試体で ある.試験装置には不飽和三軸土用に改良した三軸 試験機を用いた.図-4に試験装置の概要を示す.載 荷速度は,試料の透水係数を考慮した上で 0.005%/minと十分遅い値を設定した.排気及び排水 条件に関しては非排気非排水条件を採用した.

Case w_n とCase w_n^+ の乱した試料に関して, 表-2の 試験結果から,初期含水比が上昇した結果,初期サ クション及び破壊時サクションが低下し,それに伴 って強度が低下していることが認められた.

図-5 にCase w_nの乱さない試料の有効応力経路を 示す.この図から,初期サクションが大きいと破壊 時の強度も大きいことが確認できる.しかし,A₂-3 とB4のように,初期サクションが同じ値でも破壊時 の強度に差が生じる場合があった.これは,図-6 に 示すせん断中のサクション挙動を見ると,A₂-3の方 はせん断初期段階にサクションが増加しているが, B4 の方は破壊時までサクションの増加がみられな かったことが影響していると考えられる.

5. 結論

本研究の結論は以下のとおりである.

- (1) 試料の飽和度が高いと初期サクション及び破 壊時サクションが低下し、それによって強度 が低下することが確認された.
- (2)強度は初期サクション及び破壊時サクション のみならず、圧縮中の間隙水圧の挙動にも影響を受ける.

参考文献

- 1) 地盤工学会東北支部:東北地方の地盤工学, pp.53-71, 1997.
- 清水正喜,風間基樹:火山灰質粘性土の工学的性質,土 と基礎, Vol.53, No.12, pp.107-114, 2005.

図-1 サンプリング調査位置及び SS 試験結果

写真-1 サンプリング調査位置上空写真

表-1 乱さない試料の物理特性

Point	Wn	$ ho_{ m d}$	ρ_s	\mathbf{w}_{L}	w _p	Ip
	(%)	(g/cm^3)	(g/cm^3)	(%)	(%)	(%)
A ₁ -1	39.2	1.254				
A ₁ -2	39.0	1.287		78.2	30.8	47.5
A ₁ -3	42.9	1.232	2.680			
A ₁ -4	41.8	1.203				
A ₁ -5	39.9	1.231				
A ₂ -1	36.8	1.302				
A ₂ -2	37.7	1.270	2 (77	73.7	35.1	38.6
A ₂ -3	37.5	1.278	2.077			
A ₂ -4	39.4	1.267				
B1	31.4	1.382				
B2	31.3	1.374	2 650	70.6	26.1	44.5
B3	29.8	1.396	2.039			
B4	30.6	1.401				

図-3 乱さない試料の水分特性曲線

表-2 試験 Case 及び試験結果

Case	Point	disturbed or	W	s ₀	$\mathbf{s}_{\mathbf{f}}$	q_u	E50
		undisturbed	(%)	(kPa)	(kPa)	(kPa)	(MPa)
w _n -	A ₁ -4	undisturbed	41.8	38.9	33.2	147.3	5.9
	A ₂ -1		36.8	15.8	31.5	149.7	9.0
	A ₂ -3		37.5	8.7	34.6	157.5	9.1
	B4		30.6	9.4	15.8	82.2	4.4
	A ₁ -4	disturbed	41.6	26.3	20.8	86.2	7.1
	A ₂ -1		35.4	27.3	25.0	135.4	6.7
	A ₂ -3		37.5	25.9	27.4	129.3	5.2
	B4		31.1	12.0	10.1	46.7	3.3
$\mathbf{w_n}^+$	A ₁ -4	disturbed	42.4	4.6	6.9	72.3	11.4
	A ₂ -1		37.9	2.4	3.8	74.0	8.4

s₀:初期サクション

Shear strength q_i/2 (kPa)

s_f:破壊時サクション

 $\begin{array}{c} 0 \\ 0 \\ 0 \\ 20 \\ \text{Effective stress (kPa)} \\ \sigma' = (\sigma - u_a) + \chi \Box (u_a - u_w) \end{array}$

100

図-5 乱さない試料の有効応力経路

図-6 乱さない試料のサクション挙動