小山を過ぎる氾濫流に関する基礎実験

1.はじめに 津波の痕跡調査や水理実験に基づいた 家屋等に適用される氾濫流速推定法は津波災害の実態 を把握する上で非常に有用である.しかし、より汎用 性を持たせるためには,建物の大きさや形状,流向等を 考慮する必要があり,より一般的な氾濫流速推定式は 次式で表現されると考えられる.

$$U = C_V \sqrt{2g(h_f - h_r)} f(x, y, z)$$
(1)

ここで, Uは推定流速, Cvは流速係数, gは重力加速度, h_f とh,はそれぞれ前面と背面の浸水深,xとyは建物の大き さと形状に関する変数、zは流向に関する変数である. 2004 年のスマトラ沖地震津波では Banda Aceh 西岸の Lhoknga で写真-1 のような小山の津波痕跡を複数見つ けることができた.このような痕跡は大津波時の流速 推定に有用と考えられる この小山はほぼ円錐であり, 浸水深に斜面勾配の効果などが含まれるため、従来の 推定法で評価可能か不明である.そこで,水理実験に より各物体周辺の流況を把握し、流速推定式を拡張さ せることを本研究の目的とする.

2.実験概要 図-1 に実験装置の概略を示す.実験に 用いた模型は円錐(半径 5cm,高さ 5cm のもので半分の ものと全体のもの),円柱(半径 5cm.高さ 5cm で半分の ものと半径 5cm,高さ 7.5cm で全体のもの),角柱(10cm 四方高さ 5cm で半分のものと 10cm 四方.高さ 10cm で 全体のもの)の6種類で,半分の模型を壁面にくっつ けた場合と全体の模型を水路の中心に置いた場合の 2 ケースで実験を行った.

模型を整流装置から下流側へ 5.5m に設置し,定常 流(フルード数が 0.95 と 1.47 の 2 種類)を発生させ, 模型中心から上流へ 0.15m と 0.3m 、下流へ 0.15m と 0.3mと模型中心の5点においてプロペラ流速計を用い た一点法により流速を測定し,ポイントゲージを用い て水深を測定した.測定横断間隔は,模型中心と上流 側は 2cm,下流側は 1cm とした.

水際線の水深については,円錐と円柱は,上流側を 0°として測点を 30°間隔に,角柱は上流側を 0とし て 1cm 間隔にポイントゲージを用いて測定した.

秋田大学 学生員 岡本憲助 正員 松冨英夫

Fr=1.47

_3.5_E

3.実験結果と考察 実験条件を表-1 に示す.等流水 深*H_m*,流速*U_m*に関しては,水路に模型を置かない場合の 水深,流速とした.

水際線の水深分布を図-3,4,5 に示す. Fr=0.56,0.61 に 関しては,佐藤ら(2006)の実験結果を用いた.

円錐と円柱については, =120°付近までは,フルー ド数が大きくなると堰上げ水深も大きくなった.

図-4下段のグラフにおいて, =0°~120°で全体模型 と半分模型の実験結果を比較してみると堰上げ水深は 全体模型の方が大きくなった.この原因は,開度の違 いや模型の形状の違いによる影響だと思われる.一方, 120°以降はほぼ同じ水深分布になっている.角柱につ いては,前面では円錐,円柱同様フルード数が大きくな ると,堰上げ水深が大きくなっている.このことより, 水際線の水深はフルード数に依存すると思われる.側 面は剥離が激しく急激に水深が下がるが,その後緩や かに回復し,下流端付近で水深が等流水深H_mとほぼ同 じになった.背面は全てのケースで同じほぼ水深分布 だった.図-5下段のグラフにおいて全体模型と半分模 型の実験値を比較すると,前面と側面においては円柱 同様,全体模型の方が堰上げ水深は大きくなった.

流速係数*C_v*を**表**-2 に示す.*C_vとはエネルギー損失を* 表す係数で,簡単に言えば流体の流れ易さを示すもの である.

$$C_V = \frac{U}{\sqrt{2g(h_f - h_r)}} \tag{2}$$

算定式にある測定流速Uと背面水深h_rにおける定義に 関しては,まだ議論できる段階であるため,本研究で は場合分けを行った .*U*は等流流速*U*_mと*U*_{r15 20 30}に場合 分けをした. h_r は等流水深 H_m と h_r に場合分けをした. ここで, U_{115.20.30}とは模型から背面にそれぞれ 15cm, 20cm, 30cm地点での横断方向の断面平均流速(死水域, 斜め跳水の部分を除く), h_{f} とは円錐,円柱では0°地点 の水際線の水深,角柱では前面の水際線の水深の平均 値, h_rとは円錐,円柱では 180°地点の水際線の水深, 角柱では背面の水際線の水深の平均値である. $U=U_m, h_r=H_m$ の組み合わせを見てみると, C_V が1より大 きくなるケースがあった.表-2 には記載してないが, $h_r=H_m$ とした他のケースでも C_v が1より大きくなるも のがあったため, C_vを計算する上で背面水深に等流水 $深H_m$ を用いるべきではない $U=U_m,h_r=h_r$ の組み合わせ がこの中で一番道理にかなっているといえる.

表-2 流速係数Cv

		U	Um	Um	U _{r15}	U _{r20}	U _{r30}	回帰
Fr	(%)	h _r	h _r	Hm	h _r	h _r	h _r	垳
0.56	76	円錐の半分模型	0.50	0.73		0.85		0.75
0.61	77		0.50	0.74		0.88		0.80
0.95	88		0.64	0.99	0.64		0.66	0.90
1.47	87		0.89	1.21	0.79		0.83	1.02
0.56	67	円柱の半分模型	0.44	0.65		0.75		0.76
0.61	67		0.44	0.64		0.79		0.82
0.95	83		0.59	0.88	0.65		0.66	0.97
1.47	83		0.89	1.10	0.80		0.83	0.95
0.95	67	円柱の全体模型	0.50	0.66	0.53		0.66	1.03
1.47	67		0.63	0.71	0.64		0.67	1.00
0.56	67	角柱の半分模型	0.41	0.69		0.73		0.82
0.61	67		0.40	0.62		0.75		0.73
0.95	83		0.60	0.82	0.70		0.69	0.90
1.47	83		0.83	1.09	0.72		0.75	1.03
0.95	67	角柱の全体模型	0.52	0.61	0.62		0.69	0.87
1.47	67		0.65	0.69	0.66		0.71	0.90
	・木田川	での実験データ	・佐藤ら(2006)の実験データ					

全体模型と半分模型の*Cv*を比較してみると,全体模型の方が半分模型より小さくなっていた.これは開度の影響により小さくなったと考えられる.

 $U=U_m, h_r=H_m$ を除いた 4 つの組み合わせを各実験ケースで比較してみたところ, $F_r=0.95, 1.47$ のケースでは C_V はほぼ同じ値になったが, $F_r=0.56, 0.61$ のケースでは近似しなかった.このことより,射流に近い場合は近似することがわかった.

 $C_V = 0.27 \quad {}^{0.22}F_r^{0.4}$ (3)

本実験では実験データ数が少なかったため回帰式を作ることはできなかった.そこで松富ら(1998)による *C*_Vの回帰式に本実験でのデータを代入した.それを表 -2に示した.既報では*C*_Vは0.7~0.9 であった.1を越え てしまうものがいくつかあったが,それ以外は0.7~0.9 の範囲内であったので,本実験は妥当であると思われる.

4.**あわりに** *C_V*は円錐>円柱>角柱の順に大きくなる ことを示した.また,フルード数が大きくなると*C_V* は大きくなることがわかった.*C_V*を計算する上で背面 水深として*h_r*を使用する場合,射流に近い流れでは,*U* が*U_m*であろうと*U_{r15}U_{r30}*であろうとほぼ同じ値になる ことがわかった.水際線の水深分布や*C_V*の結果より, 開度が67%だと83%に比べて開度の影響が出てしまう ことがわかった.また,模型の形状による実験値への 影響もあると思われる.今後の課題としては,実験ケ ースがまだ少ないので実験ケースを増やして評価する 必要がある.

<参考文献>

佐藤和典・松冨英夫:小山を過ぎる氾濫流の流速推定 法,土木学会東北支部概要,pp.336-337,2006. 松冨英夫・飯塚秀則:津波の陸上流速とその簡易推定 法,海岸工学論文集,第45巻,pp.361-365,1998.