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1. Introduction

Advanced methods of timber construction utilizing composite reinforcements may allow the use of timber in more
efficient structural applications. King post truss bridge is a classical type but it has advantages of reducing the
bending moment of beam and of using upper chord members as compression members. If chord members are
reinforced by high strength materials, the load carrying capacity for buckling could be improved. In addition, the
cross sections of the members could be reduced and more larger length of span will be realized.

In the present study a new type of glued-laminated timber column having longitudinal four steel plates inserted
vertically into the middle of four surfaces of square cross section and glued by epoxy resin as shown in Fig. 1. In
this case the structure has good looking in the aesthetic point of view as well as has high load carrying capacity.
Formulas for estimating buckling strength in elasto-plastic columns are presented by using energy method. The
predicted buckling load was compared with experimental one and predicted one found within lower limit.

2. Stresses of Columns

In a composite column, as shown in Fig. 1, of axially
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where, stress o, is proportion to elastic limit and o, is yield
stress of the steel and o ranges between ¢, and g, where as
stress F, is within elastic limit and F; is stress in compression of the timber and F ranges between F), and F..

Fig. 1 Cross Section of Composite Columns

3. Buckling Analysis

In the case of composite column in elastic state, Young’s modulus of steel and timber governs the stress-strain
relation as in Eq. (1). In the case of plastic state, increment stress-strain relation is obtained using the tangent
modulus stated in Eq. (2) and, finally, the following buckling equation in case of both end pinned composite
column in elasto-plastic states can be obtained by employing energy method.
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In above equations, = 1 to 3 indicate for buckling of timber and steel in elastic (W.el-S.el) state, timber in elastic and
steel in plastic (W.el-S.pl) state and both timber and steel in plastic (W.pl-S.pl) state. E,, and E,, are obtained by
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bending test and the Youngs modulus for the steel (E;) of hew=52 54 56 hew=69.7  hw=979
$S400 is used as 2.1 X 10° kgflcm®.
. Fig. 2. Buckling Strength of Columns
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Fig. 3. Comparison of Buckling Strength Results



