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OBJECT To derive a consistent as well as practical methodology for dynamic
analysis of arch dam due +to hydrodynamic and foundation interactions is very
interesting and desirable, While the Euler-Lagrangian method for such a
fluid-structure problem 1is too complicated; demanding the coupling of pressure and
displacement fields, the full Lagrangian method in which the hydrodynamic interaction
is quite naturally accounted for is promising.
THEORY The model of arch dam as a shell structure is appropriately available in
displacement-based finite element formulation.* Furthermore the Lagrangian formulation
of the fluid domain is described elsewhere.!’? The significant problem remained here
is how to couple these +two domains at their interface. In the Eulerian method the
interface condition is
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in which P and © are the fluid pressure and mass density, n is suaface normal vector
and us is the structural dispalacement. But if the fluid is modelled by displacement
formulation, three independent conditions should be satisfied, i.e.,
i) ldentity of normal displacements of fluid and of structure.
ii) Zero tangential force at the interface.
iii) Identity of nmormal forces at the interface.
These define the ” slip ” condition of fluid-structure interface. To satisfy the slip
conditions (at least partially), there are methods such as employing very thin fluid
elements adjacent to the dam and gradually increasing such thickness toward upstream.
This not only is expensive due to the large number of element layers needed, but also
is inaccurate. Other techniques like the coordinate transformation at each sample
point on the interface is not appropriate for curved structures.
To solve this problem here we employ a zero thickness interface element originally
developed for solid contact problems®. The constitution of the interface element is
expressed in relative displacements in curvilinear coordinates as
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in  which 7, Cs;, and &; are a relative tangential force component, its
corresponding elastic coefficient and its relative displacement component
respectively. Oa, Cn, and &, are the same quantities but for the normal direction.
To meet the requirments of the slip interface we choose Cy=oc which makes & ,=0 i.e.,
the first condition. Also by allowing Cs1=Cs2=0 we get 7 1=7=0 i.e., the second
condition. However the third condition is not satisfied as

O 2=Cn 0 o#0
but its error is apparently very insignificant as shown in examples. Such fluid-solid
models could be employed for the dynamic analysis of a dam-reservoir system only when
the appropriate radiation conditions for the reservoir upstream end, and for the
foundation boundaries are implied. Furthermore the wave refraction on the reservoir
walls and bottom are essential for such an analysis.?’?
NUMERICAL RESULTS A thin flat concrete dam, 60.m high and 3.m thick, is standing
against a rectangular reservoir. The natural modes of this system are shown in Fig.2.
Case 3 has the consistent model presented here. As shown in Case 2 the error involving
the ” locked ” interface 1is about 20%. The added mass solution is relatively
reasonable but only for the lowest modes.
The 3-D models of Naruko arch dam and its reservoir are modelled by only 4 solid
22-node, 4 interface 9-node, and 8 fluid 27-node elements. Fig.! demonstrates that
when the gravity load is applied as a body force, the displacements coincide with the
exact (based on the hydrostatic traction) solution. Finally application of the full
methodology including the above, to Yuda arch dam seismic response analysis proves
excellent when compared with the measured respnse as shown in Fig.3.
CONCLUSIONS A full Lagrangian method is developed for the dynamic analysis of
arbitrary fluid-structure linear systems sush as in the case of arch dam. The new
algorithm employs a unique interface model which helps high accuracy and economy of
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the solution. It is compatible with standard codes and is easy to use.
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FIG. 1 - HYDROSTATIC LOADING OF NARUXO ARCH DAM.
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—— FIG. 3 — COMPARISON OF STREAM COMPONENT ACCELERATIONS OF
MEASURED AND CALCULATED- RESPONSES OF YUDA ARCH DAM (AT THE CREST CENTER)
DUE TO SIKULTANEOUS VETRICAL AND STREAM COMPONEXTS OF 1978 EARTHQUAKE.
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