鉄筋・コンクリート間で付着のないRC梁部材の曲げ耐荷性状に関する 実験的および解析的研究

Experimental and analytical study of flexural strength of reinforced concrete beams with disbond reinforcing steel

村山八洲雄*, 津野将太郎**, 宇志呂裕一** Yasuo Murayama, Shotaro Tsuno and Yuichi Ushiro

*工博, 岡山大学教授, 大学院環境学研究科 (〒700-8530 岡山市北区津島中 3-1-1) ** 修士課程, 岡山大学, 大学院環境学研究科 (〒700-8530 岡山市北区津島中 3-1-1)

This research studied the flexural strength of the members where bond loss occurred in tensile reinforcing steel. The implementation of the tests on member specimens and analytical study was conducted with length of bond loss, reinforcement ratio, and existence of the concrete cover as parameters. For the members where the concrete cover had flaked off, and the members where the reinforcing steel was gouged out due to repair work, from the result, it was clear that the longer the length of bond loss and the higher the reinforcement ratio, the more remarkable the decrease in the strength if compared to non-deteriorated members.

Key Words: reinforced concrete ,unbond, flexural strength, experiment, analysis キーワード:鉄筋コンクリート,梁部材,付着損失,曲げ耐力,実験,解析

1. はじめに

コンクリートの塩害や中性化などが原因で、著しく腐 食劣化したコンクリート構造物が近年増加しており、こ れら構造物の耐力評価が重要になっている。鉄筋の腐食 が進行すると鉄筋の断面減少に伴い見かけ上鉄筋の降 伏点が低下し¹⁾、腐食が著しく進行すると鉄筋とコンク リート間の付着力も大きく低下する²⁾ことが知られてい る。コンクリート桁では腐食ひびわれ発生後、被りコン クリートが剥落すると、付着力は殆ど期待できない状態 となる。

引張り鉄筋の腐食の影響を部材の曲げ耐力の観点か ら考えると,鉄筋とコンクリート間の付着が健全な場合 は鉄筋の降伏点の低下の影響は既往の鉄筋コンクリー ト理論によって推定が可能である。しかし,付着力が著 しく低下したり付着力を喪失した部材については,既往 の耐力評価法の適用は困難となる。それは付着が健全で ないと,部材断面のいわゆる平面保持の仮定が成立しな くなるからである。

腐食劣化した部材を補修する過程では、引張り鉄筋を はつり出す作業が行われる。このとき付着力は全くない 状態になるとともに、鉄筋とコンクリート間にクリアラ ンスが生じるので、コンクリート断面内で付着損失した ものとは耐荷メカニズムが異なることも想定される。

このような鉄筋とコンクリート間で付着損失が生じ た鉄筋コンクリート部材の曲げ耐力に着目した研究は, 海外でいくつか行われている。

Eyre ら³⁾は、付着損失が生じた鉄筋コンクリートの曲 げ耐力を解析的手法で検討し、付着損失長が大きく、ま た鉄筋比が大きいときに、曲げ耐力が大きく低下するこ とを示している。

Caims ら⁴⁾は、引張り鉄筋をはつり出した部材の曲げ 耐力を対象に、19体の試験体を用い主として実験的な検 討から、付着損失部材の耐力低下のメカニズムに迫る多 くの知見を得ている。

Raoof ら⁵⁾は、引張り鉄筋をはつり出した部材の曲げ 耐力を対象に、8 体の試験体の実験結果から、付着損失 長が大きいと耐力低下が著しいことを示している。

しかし, Eyre らの解析はコンクリートの応カーひずみ 関係を線形と仮定しており,定量的には不明な点が残る。 一方,実験研究においては,対象が鉄筋をはつりだした 部材に限られ^{4),5)},コンクリート断面内で付着損失した ものについての研究は行われていない。また,引張り鉄 筋に高強度の鉄筋が使用される⁴⁾ などしているため,付 着損失を生じた鉄筋コンクリート部材の耐力低下の特 性を考える上で、検討すべき課題も残る。

このような背景をもとに、筆者らはこれまで、コンク リート中で引張り鉄筋が付着損失を生じた部材、および 引張り鉄筋がコンクリートの外に露出した部材を対象 に、それぞれ単純化した系統的な実験を行い、曲げ耐荷 性状を明らかにしてきた^{6)、7)}。また、付着損失を生じた 単鉄筋コンクリート部材を対象に、コンクリートの材料 非線形および鉄筋とコンクリートの変位の適合条件を 考慮した理論式の展開を行い、曲げ耐力を推定する方法 を提案した⁸⁾。

今回,筆者らは,被りコンクリートのない付着損失 鉄筋コンクリート部材の実験および引張り鉄筋が露出 した部材の部材寸法の影響と圧縮鉄筋の影響に関する 実験を行い,先に行った実験結果^{6),7)}と併せて,この 種部材の耐荷性状について総合考察を行った。そして, ファイバーモデルを基にした解析法により,一連の実 験について解析するとともに,実構造物の場合を想定 した曲げ耐力低下に関するパラメータ解析を行った。 本論文では,これらの結果について報告する。

2. 実験

2.1 試験体寸法と試験体の種類

実験は、大別してつぎに示す3シリーズで構成され ている。

- 引張り鉄筋において部分的に付着損失があり、
 その部分で被りコンクリートを有する部材(以下, unbond を意味する U シリーズと呼ぶ。)
- ② 引張り鉄筋において部分的に付着損失があり、 その部分で被りコンクリートがない部材(以下、 no-cover を意味する NC シリーズと呼ぶ。)
- ③ 引張り鉄筋が部分的にコンクリートの外に露出している部材(以下, exposed を意味する E シリーズとよぶ。)

試験体諸元を図-1に示す。断面高さの相違に着目 した試験体(E12-12d(1.5h), E12-12d(2.0h))を除き,外 形寸法は基本的に幅115mm,高さ120mm,長さ1800 mmである。鉄筋比が大きいときに付着損失の影響が 大きいとの考えもあるので,鉄筋比は釣り合い鉄筋比 以下で比較的大きめの範囲とし,1.2%,1.9%および 2.5%の3種類を考慮した。付着損失長の影響を調べる ため,その長さを600mm,900mm,1200mmの3種類 とした。これらは断面の有効高さに対してそれぞれ6, 9,12倍,スパン長に対して0.45,0.68,0.91倍となっ ている。比較のための付着が健全な試験体(以下,健 全試験体と呼ぶ。)を含め,合計39体の試験体を用い た。

試験体の種類を表-1に示す。試験体番号を表す記号

の意味は基本的に次のとおりである。最初のアルファベットはシリーズ実験の違いを、次の数値は鉄筋比の大きさ(鉄筋比の 1000 倍で表示)を、ハイフンのあとの数値は付着損失長(部材断面有効高さに対する比として)を、最後の"d"は有効高さを表している。ただし、アルファベットの"B"は付着損失のない健全試験体である。

とくに E シリーズの試験体では、付着損失区間のコン クリート断面高さ 85mm (鉄筋の上側クリアランスが 10mm)を基本としているが、断面高さが 75mm (クリア ランス 20mm)の試験体 (E25-12d(75))も用意した。

表-1 試験体の種類

No.	ρ	l_d/d	f_c'	$\rho f_y / f_c'$	Pexp	P_{cal}	P_{calf}	$\mathcal{E}_{s \max}$	$\mathcal{E}_{_{SW}}$	δ_s	mode	
UB12	1.2	_	30.6	0.15	18.9	17.1	19.4	13232	_	- /	Y	-
U12-6d		6	34.5	0.13	18.4	17.3	18.0	2090	8300		Y	
U12-9d		9	34.3	0.13	17.4	17.2	17.6	2035	3600	1 /	Y	
U12-12d		12	32.3	0.14	17.3	17.2	17.6	2076	3600		Y	
UB19	1.9	-	35.7	0.19	27.8	25.0	26.4	11618	-		Y	文
U19-6d		6	36.2	0.19	25.5	25.1	25.6	2100	8200		Y	献
U19-9d		9	36.0	0.19	25.5	25.1	25.4	2135	2800		Y	6)
U19-12d		12	36.0	0.19	25.3	25.1	25.2	2079	2400		Y	
UB25		Ι	34.8	0.26	34.7	32.1	33.0	21452	-]/	Y Y	-
U25-6d	25	6	35.5	0.25	33.7	32.2	32.8	2036	欠測	1/		
U25-9d	2.3	9	35.0	0.26	33.5	32.1	32.6	2051	2300	/	Y	
U25-12d		12	35.0	0.26	33.1	32.1	32.2	2097	2300	/	Y	
NCB12	12	—	22.7	0.20	19.1	16.8	17.9	2100<	—	. /	Y	
NC12-12d	1.2	12	22.8	0.20	17.4	17.4	17.2	2100	2300	$ \begin{array}{c c} & YC \\ \hline & Y \\ \hline & Y \\ \hline & C \rightarrow Y \\ \hline & C \rightarrow Y \\ \hline & C \rightarrow Y \end{array} $	YC	注1)
NCB25			22.6	0.40	33.1	29.7	31.2	17470	—		Y	
NC25-6d		6	22.7	0.40	32.3	29.8	30.0	1990	1830		Y	
NC25-9d	2.5	9	22.8	0.40	28.3	30.8	26.8	1960	2330		C→Y	
NC25-12d		12	22.9	0.40	26.0	30.6	24.0	8700	1710		C→Y	
NC25-12d(R0)		12	22.7	0.40	25.5	30.5	23.8	1900	1670		C→Y	
EB12		-	26.5	0.17	18.0	17.1	18.4	2000<		—	Y	
E12-6d		6	28.0	0.16	16.4	17.3	16.7	1950	1 /	2.1 7.2 12.1	CY	文 献 7)
E12-9d		9	28.1	0.16	16.0	17.5	16.2	1950	i /		С	
E12-12d	1.2	12	28.1	0.16	14.8	17.2	13.2	2090	1 /		С	
E12-12d(75)		12	28.4	0.16	13.2	17.6	12.4	1850		11.8	С	
E12-12d(1 5h)		12	28.2	0.16	34.4	38.8	_	_		-	С	
E12-12d(2.0h)		12	28.2	0.16	61.2	69.0	_	_			C	注1)
E12-12d(2.01)		12	20.2	0.10	26.1	24.5	25.2	6820~			v	
ED17		6	27.7	0.24	20.1	24.5	23.2	2010	{	26	I C	文
E19-00	1.9	9	27.7	0.24	24.0	24.7	19.9	2010		9.7	C	
E19-12d		12	28.0	0.24	19.7	24.7	15.8	1910		12.0	C	
EB25		_	27.3	0.33	32.4	31.0	31.6	2090<	1 /	$\begin{array}{c c} - & Y \\ \hline - & Y \\ \hline 4.9 & C \\ \hline 6.3 & C \\ \hline 10.2 & C \\ \end{array}$	V V	献
E25-6d		6	27.5	0.33	30.3	31.0	27.8	1980			C	7)
E25-9d		9	27.6	0.33	23.5	30.6	22.2	1580			-	
E25-12d		12	27.7	0.33	19.0	30.7	17.4	1320	1 /		C	
E25-12(R0)	25	12	23.7	0.39	14.8	_	12.0	_		_	С	注1) 注2)
E25-12d(R1)	2.5	12	23.7	0.39	16.6	_	15.2	_		_	С	
E25-12d(R2)		12	23.9	0.38	19.4	_	15.6	_	1/	_	C	
E25 12d(R2)		12	23.7	0.30	16.5	_	15.6		/		C C	
E25-12d(R3)		12	23.7	0.37	10.5		15.6		/		C C	
E23-120(R4)	, AH	1ム - 体かした 1	24.0	0.30 辛担止日 7	10.4 いいようを		13.0			_	C	
	ρ :對	r 朋友上, l_{a}	_d / d :竹:	有損 欠 反•1	月刻局さ	FL						
	f_c' :=	コンクリー	卜強度(N	$\sqrt{mm^2}$, ρf	$f_y / f_c' : $	失筋係数						
	<i>P</i> :	最大荷重	(kN)	P., :付着が	健全なな	昜合の曲	げ耐力計	算値(組み	立て筋考	慮せず	È) (kN)	
		ファイバ	ーエディ	ルテトス研究	荷(上緑	相比日 フィッ	ケケなセト	7℃才起金空=	去虐) (ĿN	T)		
備考	Fcalf:ノアイハーてアノレによる脾切胆(上核則組みひ(肋わよい、開始肋弓慮)(KN)											
	ε _{sw} :ひび割れ幅から求めた最大荷重時の鉄筋の平均ひずみ量(×10 [°])											
	$\mathcal{E}_{s \max}$:最大荷重	自時鉄筋	ひずみ量(>	<10-6) (번	ん断スノ	ペン部の測	」点)				
	S・最大荷重時の鉄筋とコンクリートの相対鉛直変付(mm)											
	$mode: www.therefore = \sum_{i=1}^{n} \frac{1}{2} (11) = $											
	f_y : 303 (N/mm ⁻) (U \vee y $ \wedge$), 36/(N/mm ⁻) (NC,E \vee y $ \wedge$)											
	注1) 新規実験											
	注2)対応する健全試験体はNCB25											
	注3) ε_{smax} の不等号は、示した数値のひずみ量でひずみゲージが測定不能になったことを表す。											

	U試	験体	NC 訃	弌験体	E 試験体		
	降伏点 (N/mm ²)	引張り強さ (N/mm ²)	降伏点	引張り強さ	降伏点	引張り強さ	
D10	363	503	367	500	367	500	
D6	不明確	540	不明確	490	不明確	533	
D4	347	505	不明確	535	328	478	

表-2 使用鉄筋の降伏点と引張り強さ

また,コンクリート断面高さの影響を調べる目的で,部 材断面高さの大きい試験体 (E12-12d(1.5h), E12-12d(2.0h))を,上縁側軸方向鉄筋量の影響を調べる 目的で,その鉄筋量が異なる試験体 (E25-12d(0R)~ E25-12d(4R))も用意した。

いずれのシリーズ実験も、スパン中央部での曲げ破壊 に着目したので、支点付近の部材上縁側引張り(下縁圧 縮)破壊や引張り鉄筋の定着破壊および部材のせん断破 壊を抑制するため、試験体を上縁軸方向鉄筋および横方 向鉄筋で補強している。支点上縁付近の補強筋(後述の D6)の量は、UシリーズとNCシリーズでは引張り鉄筋 と同数(2~4本)、Eシリーズでは4本(後述のD6)と した。本数の違いによる影響については、試験体 E25-12d(R0)~E25-12d(R4)の実験で別途調べた。

2.2 材料, 配筋, 養生

引張り鉄筋には D10 鉄筋を使用した。引張り鉄筋の定 着部補強と部材せん断補強および組立て筋(上縁側軸方 向)に D4 鉄筋を,また,支点付近上縁側補強には D6 鉄筋を使用した。使用した鉄筋の降伏点と引張り強さを **表-2**に示す。一連の実験で D10 鉄筋には明確な降伏点 を有するものを使用した。一例として,NC と E シリー ズで用いた D10 鉄筋の引張り試験による応力ーひずみ関 係を図-2に示す。ここで、ひずみ量はゲージ長 50mm の鉄筋伸び計の測定値から換算した。参考のため伸び計 の測定区間の外側に貼り付けた大ひずみ用箔ゲージ(鉄 筋の片側の節を一部切除)の測定値も併記した。

Uシリーズおよび NC シリーズにおける引張り鉄筋の 付着除去には,鉄筋にグリスを塗布したのち OHP フィ ルムで包み,更にその上をビニルテープで被覆する方法 によった。NC シリーズにおける被りコンクリートの除 去およびEシリーズにおける鉄筋のはつりだしに相当 する鉄筋露出には,鉄筋組立時に発泡スチロールを予め 型枠に埋め込んで箱抜きする方法によった。また,NC およびEシリーズでは,ひびわれ発生位置の不確定要素 を除去するため,付着の健全な試験体を除き,スパン中 央にコンクリート高さの 10%のひびわれ誘発目地を設 けた。

コンクリートには,充填性を考慮して最大骨材寸法 15mmのレディミクストコンクリート(18-15-15N)を使

写真-1 実験状況

用した。シリーズ毎に基本的に同一バッチのコンクリートを用いた。コンクリート打設後,木製型枠のまま湿布養生して材齢7日で脱型したのち,最低で材齢28日まではビニルシートでラップし室内で常温養生した。加力実験は、U,NCおよびEの各シリーズでそれぞれ材齢が29~51日,39~54日および35~70日の範囲で行った。 圧縮試験用テストピースの養生も試験体と同様とした。

2.3 加力方法と測定

加力は、スパン中央部にフレームを介して間隔 200mm の2点載荷(図-1,写真-1)により行った。載荷部 と支点部には、それぞれ直径 30mm と直径 50mmの鋼棒 および幅 50mm、厚さ 20mmの支圧板(鋼板)を使用し、 加力点と支点で部材の回転と水平変位を拘束しないよ う(加力点:テフロン、支点:ローラー)配慮した。加 力能力100kNのアクチュエータを用いて変位制御方式で 加力した。 実験では、荷重、部材変位、鉄筋ひずみ、コンクリートひずみ、ひびわれ分布、ひびわれ幅を、特にEシリーズでは露出鉄筋の鉛直変位および部材端部の傾斜角も 測定した。荷重はアクチュエータに組み込まれたせん断ひずみ型ロードセルで、変位はひずみゲージ式変位計で、 傾斜(Eシリーズ)はポータブル傾斜計で測定した。

鉄筋のひずみは、UおよびNCシリーズでは付着損失 試験体毎に1本の引張り鉄筋を対象に3カ所測定した。 Eシリーズでは付着損失試験体の全ての引張り鉄筋を対 象に付着損失区間で1断面,そのうちの1本の引張り鉄 筋については定着部で1箇所測定した。

鉄筋ひずみ測定用にはゲージ長 5mm の一般応力測定 用の箔ゲージを用いた。U および NC シリーズでは1測 点に付き同一鉄筋で側面に相対して2枚(縦リブの一部 切除), E シリーズでは上下面に2枚貼り付け(横節の一 部切除), 2枚の測定値の平均値を測点の測定値とした。 U および NC シリーズでゲージの貼り付け位置を鉄筋側 面にしたのは,鉄筋とコンクリート間の支圧とずれに伴 うゲージの断線予防のためである。

コンクリートのひずみはゲージ長 30mm の箔ゲージを 用いて,また,ひびわれ幅の測定にはクラックスケール を用いて測定した。

3. 実験結果と考察

3.1 概要

表-1に試験体毎に、実験時コンクリート強度 f_c',最大荷重P_{exp},最大荷重時の鉄筋ひずみ量 ε_{smax} ,ひびわれ幅から推定した最大荷重時の鉄筋位置平均ひずみ量 ε_{sw} ,最大荷重時の鉄筋とコンクリート間の相対鉛直変位量 δ_s および破壊モードを示した。

ここで,各試験体の実験時コンクリート強度とは,U, NC,Eの実験シリーズ毎に,材齢28日,実験開始日, 実験終了日を含めてそれぞれ5,10,12回の圧縮試験を 行い,その回帰式(対数式)から求めた値である。鉄筋 ひずみ量は,付着損失区間のいずれもせん断スパン部で の測点の値を記した。ひびわれ幅から推定した鉄筋位置 平均ひずみ量とは,付着損失区間に発生した鉄筋位置の ひびわれ幅(水平方向測定値)の合計値を荷重ステップ 毎に測定して最大荷重時の値を求め,これを付着損失長 で除した値である。鉄筋とコンクリート間の相対鉛直変 位量とは,Eシリーズの付着損失試験体におけるスパン 中央での部材直角方向の相対変位のことで,最大荷重時 の値を記した。破壊モードは,鉄筋降伏先行の場合を"Y" で,コンクリート圧壊先行の場合を"C"で表した。

表には付着が健全な場合の曲げ耐力の計算値 P_{cal} も併記した。この計算には、平面保持を仮定し、コンクリートおよび鉄筋の応力ひずみ関係にはコンクリート標準示方書⁹⁾ に示されるものを用いた。ただし、材料係数お

よび最大応力度とコンクリート強度の比k₃はいずれも1, 終局ひずみ量は3,500×10⁶とした。その際,コンクリー ト強度には実験時コンクリート強度の値を用いた。とく に鉄筋はつりだしを想定したEシリーズでは,試験体製 作上の出来形誤差が一部見られたので,計算には出来形 の値を用いた。出来形測定によれば一様曲げ区間での製 作誤差は,断面有効高さで最大2.2%,断面幅で最大1.6% であった。

荷重とスパン中央コンクリート部の鉛直変位との関係を、{U12, U25}, {NC12, NC25}, {E12, E25}の各シリーズについて図-8に, また, NC25シリーズを例に, 同一荷重での各試験体の変位分布を図-3に, 最大荷重時のひびわれ状況を図-4に示した。

図-3 変位分布 (NC25 シリーズ, 21kN 時)

図-4 ひび割れ分布 (NC25 シリーズ)

3.2 部材の変位挙動

付着損失試験体の変位挙動を,部材剛性,ひびわれ発 生状況および部材変形について述べる。

(1) 部材の弾性剛性

まず部材剛性の観点から見ると、荷重一変位関係図 (図-8)に示されるように、いずれのシリーズにおい ても部材降伏前の割線剛性は、鉄筋比が同じならば付着 損失長が大きいほど小さいことが分かる。これは、付着 が健全な場合に存在するテンションスティフニングが 部分的に消失すること、および後述するようにスパン中 央で上縁側コンクリートのひずみ量が健全試験体の場 合よりも大きくなるためである。荷重17kN でシリーズ 間を比較すると、図-5に示すように、UとNC間では 差は明確でなかったが、Eでは小さめになった。

(2)ひびわれ状況

どのシリーズにおいても図-4に例示したように付 着損失を有する部材では健全試験体に比べてひびわれ 本数は少なく,付着損失長が大きいものはひびわれが集 中する傾向にあった。Uシリーズで発生せずNCとEシ リーズで発生したひびわれの種類として,支点付近上縁 のひびわれがある(図-4)。この種のひびわれは, NC25-12d (R4), NC25-12d (R0); E12-12d, E19-12d, E25-9d, E25-12d, E25-12d(1.5h), E25-12d(2.0h), E25-12d(75)の試験体で発生した。このことから,支点付 近上縁のひびわれは,付着損失長の大きいものや鉄筋比 の大きい場合に発生しやすいといえる。

(3)部材変形

付着損失を有する部材では、荷重の増加に伴い図-3 に示すように部材が中央で折れ曲がる形状となり、特に 付着損失長が大きいものでは、スパン中央の変位の殆ど がスパン中央の折れ角に起因するように見受けられた。

特に E シリーズの付着損失試験体では、付着損失区間 で鉄筋とコンクリート間にクリアランスを設けている ので,鉄筋とコンクリートとの間に鉛直変位量の差が認 められた。すなわち、図-6の模式図に示したように、 コンクリート部がスパン中央を折れ点とする形状で変 位が進行するのに対し, 露出鉄筋は両定着部間を結ぶほ ぼ直線の状態で変位が進行した。荷重とスパン中央部変 位の関係を, E25-12d 試験体を例に図-9 に示す。このケ ースでは最大荷重を迎えた頃,鉄筋が部材中央でコンク リートに接し、その後は両者一体となって変位したこと が分かる。E シリーズの各試験体の最大荷重時の相対変 位量は, 表-1に示したように,総じて付着損失長が大 きいほど大きい値になった。見方を変えると付着損失部 材では、健全試験体の部材断面に比べて断面の有効高さ が減少したということができる。その影響については3.4 節で述べる。

なお, 表-1に示した相対変位の値が試験体の設計上 のクリアランス 10mm (E12-12d(75)では 20mm) を超え ているものもあるが,これは,主として試験体の製作誤 差による。

3.3 鉄筋およびコンクリートのひずみ

(1) 鉄筋ひずみ

a 荷重-ひずみ量関係: 荷重とスパン中央部の鉄 筋ひずみ量の関係を, NC シリーズを例に図-7に示す。 どの付着損失試験体の場合も,弾性範囲では荷重とひず み量の関係はひびわれ後ほぼ直線関係にあり,また鉄筋 比が同じならば,同一荷重に対する発生ひずみ量は試験 体間で大きな差はなかった。

b 最大荷重時のひずみ量: 付着が健全な試験体 (記号"B")では、コンクリートのひびわれ位置が鉄筋 ひずみゲージの位置と一致しないものもあるので、最大 荷重時のひずみ量が 2,000×10⁶程度と小さいこともあっ たが、荷重一変位関係(図-8)から分かるように、変 位の増加に対して荷重増加が非常に小さいかまたは荷 重増加が殆ど見られない明確な領域があることから、鉄 筋比の大きさに関わらず健全試験体の鉄筋は降伏した と判断される。

Uシリーズの付着損失試験体では全て、鉄筋はスパン 中央部測点で明瞭に降伏していた。これに対して、せん 断スパン部の測点では、ひずみ量は 2,040×10⁶ ~ 2,140×10⁶の範囲(表-1)にとどまり、ひずみが急増 することがなかった。一方、付着損失区間のひびわれ幅 から推定した平均ひずみ量(3.1節参照)は、 2,300×10⁶ ~8,300×10⁶となり(表-1)、これらは図-11からも分 かるように、付着損失が大きい方で、また鉄筋比が大き い方で平均ひずみ量は小さくなる傾向にあった。いず

-883-

れも計算上の鉄筋降伏ひずみ量 1,815×10⁶を超えている ものの,ひずみ硬化点ひずみ量 (2.8%)に較べると非 常に小さい値である。このことから,付着損失試験体の 引張り鉄筋は,最大荷重時には長手方向に降伏の伝播過 程¹⁰にあった考えられる。降伏の伝播は,付着損失が 大きい方で,また鉄筋比が大きい方で初期段階にあった と推定される。なお,一般に鉄筋のひずみゲージによる 降伏ひずみ量は,変位(伸び)測定による降伏ひずみ量 よりも大きく測定されることを付記する。

NC シリーズの付着損失試験体でも全て、鉄筋はスパ ン中央部測点で明瞭に降伏していた。せん断スパン部の 測点では、ひずみ量は一部 8,700×10⁶の値もあるが、他 は 1,900×10⁶~2,100×10⁶の範囲(**表**-1)であった。ひ びわれ幅から推定したひずみ量は 1,710×10⁶~ 2,330×10⁶の範囲(**表**-1)であった。これらのことか ら、NC シリーズの鉄筋ひずみの挙動はUシリーズと同 様であるが、ひずみ量そのものは小さめであったといえ る。

なお,スパン中央部は大きなひびわれを伴う部材の折 れ点にあたり,この部分の測点はその影響で鉄筋が降伏 しやすくなっていた可能性がある。

E シリーズの付着損失試験体の各最大荷重時の鉄筋 ひずみ量は, 表-1に記したとおりである。鉄筋比毎に 付着損失との関係を図-12 に示した。ここでは各試験 体の全ての鉄筋の平均値を用いている。鉄筋比が 1.2% と 1.9%の試験体の全てでひずみ量は降伏ひずみに近い 値を示した。他方 2.5%では, 露出長の短い試験体

(E25-6d) で降伏ひずみに近い値であったが,露出長の 長い試験体(E25-9d, E25-12d) ではひずみ量は小さく, 鉄筋が降伏するかなり前に最大荷重を迎えたといえる。

(2) コンクリートひずみ

ー様曲げ区間の上縁コンクリートのひずみに着目した荷重-ひずみ量関係を,NCシリーズの場合について 図-13 に示す。図によれば、付着損失長が大きいほど 荷重の増加に対してひずみ量の増加が著しくなること がわかる。この傾向は、U、Eシリーズにおいても同じ であった。Caims ら⁴⁾は、付着の健全な鉄筋コンクリー ト梁試験体に一定の荷重をかけ、鉄筋をはつり出してい くと、その過程で上縁側コンクリートのひずみ量が次第 に増加(中立軸は上昇)することを確認している。実験 方法は異なるが今回の実験でも同様のことが確認され たといえる。

図-14は、NCとEシリーズの付着損失試験体のうち、 付着損失長が1,200mmの試験体(NC25-12dとE25-12d) について、同一荷重(15kN)時のコンクリートのひず み分布を示したものである。いずれもスパン中央では上 側で圧縮、鉄筋定着部付近では下側で圧縮になっている。 このように、付着損失した鉄筋コンクリートでコンクリ ート部に作用する曲げモーメントがスパン中央と支点 側とで逆転することは、既に知られている^{3),4)}。上記

荷重において鉄筋のひずみ量は両者ともおよそ 1,000×10⁶であったが, EタイプはNCタイプに比べて, 定着部付近のコンクリート下縁の圧縮ひずみ量が大き く,かつ下縁から中立軸までの距離が小さいことが図-14 から読みとれる。つまり,コンクリート断面高さが 小さい方で定着部付近の曲率は大きくなっている。コン クリート断面高さが小さいと,コンクリートの曲げ剛性 が小さいばかりでなく,引張り鉄筋の反力として作用す る圧縮力のコンクリート図心に対する偏心量も大きく

図-14 コンクリートひずみ分布の比較(NC25-12d, E25-12d)

なるためと考えられる。

別途測定した結果によれば、コンクリートの断面高さ が大きいU試験体の下縁側圧縮ひずみ量は、総じてNC 試験体よりも小さかった。

以上のことから,付着損失区間のコンクリート断面 高さが小さいほど,定着部付近で上に凸の大きな変形が 生じるといえる。

3.4 曲げ耐力および破壊モード

(1)破壊モード

鉄筋のひずみゲージの値, コンクリート圧縮縁のひず みゲージの値および目視観測をもとに判断した各試験 体の破壊モードを, 鉄筋降伏先行を"Y", コンクリート 圧壊先行を"C"で表し, **表-1**に示した。

Uシリーズでは、付着損失試験体の全てが鉄筋降伏型 であった。NCシリーズでは、モードの混在("YC") および圧壊先行後に鉄筋降伏したもの("C→Y")もあ った。後者は、コンクリートの部分圧壊のあと軸方向組 立て筋(D4鉄筋)が抵抗した可能性がある。Eシリー ズの付着損失試験体では殆どが圧壊先行となった。

(2)曲げ耐力

a 付着損失に伴う耐力低下: 各試験体の最大荷重 $P_{exp} を 表 -1$ に示した。コンクリート標準示方書による 曲げ耐力から荷重換算した計算値 P_{cal} (3.1節参照)も併 記している。コンクリート強度の影響を除くため両者の 比 $P_{exp}/P_{cal} を求め、更に健全試験体の場合を基準にし$ て、付着損失試験体の耐力比を求めた。その結果を代表的なものについて図-15に示す。図には、後で述べるファイバーモデルによる解析結果も破線で併記している。

図より明らかなように、全ての試験体において健全試 験体に対する耐力比は1を下回った。耐力低下は総じて、 U, NC, Eシリーズの順に著しくなること、付着損失長 が大きいと著しくなることがわかる。とくに NC と Eシ リーズでは、鉄筋比が大きいと顕著である。

b 耐力低下の要因

Uシリーズの付着損失試験体のように、引張り鉄筋が 降伏したものでも耐力低下が生じるのは、健全試験体で

は降伏後も荷重が増加するのに対し、付着損失試験体で は圧縮縁コンクリートのひずみの進行が健全試験体よ りも早く(3.3節参照)、降伏後に荷重の増加がないまま 早期にコンクリートが圧壊するからである。

NC 試験体や E 試験体で大きな耐力低下を示したもの は、鉄筋比が大きくかつ付着損失長が大きいものであり、 主として圧壊先行の破壊モードの場合であって、鉄筋が 降伏しにくい試験体である。

図-16は、Eシリーズのうち付着損失長が1,200mmの 試験体の最大荷重時の,支点より外側部分での部材傾斜 角の測定値と,スパン中央変位から求めた半スパンの平 均部材角との比を求め、比較したものである。健全試験 体では上記の値は1より大きいと考えられるが、鉄筋が 露出した試験体では総じて1より小さく、鉄筋比が大き いものあるいはコンクリート部分の断面高さが小さい もので、より顕著になっていることが分かる。

このことから,鉄筋比が大きい(引張り力が大きい) もの,付着損失長が大きいもの,およびコンクリート部 の断面高さが小さい(はつり出しが深い)ものでは,定着 部付近で上向きに凸の変形がより大きくなると考えら れる。そしてこの部分が塑性化していくと一定以上の鉄 筋の引張り力の反力を受け持つことができなくなり,そ の間,部材中央の上縁コンクリートのひずみが増大し (3.2 節参照),上縁コンクリートが圧壊したとみること

ができる。

c 鉄筋の相対変位の影響: Eシリーズの付着損失 試験体では、3.2節で述べたように鉄筋とコンクリート の間に相対変位が生じ、破壊断面では見かけ上、有効高 さの減少が生じた。一般に断面幅と鉄筋比が一定の健全 部材では、曲げ耐力は断面の有効高さの2乗に概ね比例 するが、本実験のように引張り鉄筋が相対移動する場合 は、有効高さの減少に反比例して鉄筋比が増加するので、 耐力への影響は有効高さの概ね1乗に比例する。

したがってこの影響が最も大きい付着損失長1,200mm の場合,相対変位量は約 10mm であり(**表**-1参照), 当初の有効高さが 100 mm であるので,約 10%の耐力低 下が,鉄筋の相対変位の影響として含まれているといえ る。

(3)部材寸法の影響

E シリーズの鉄筋比 1.2%, 付着損失長 1,200mm の場 合について, E12-12d 試験体を標準に, 有効高さがその 1.5 倍および 2 倍の試験体の加力実験を行った。付着損 失長・有効高さ比は, それぞれ, 12, 8, および 6 にな っている。実験結果のうち荷重-スパン中央変位の関係 を比較して図-10 に示した。ここで, スパン長が同じ 大きさのとき, 荷重は有効高さの二乗に比例し変位は有 効高さに反比例するという相似則を用いて, 標準寸法試 験体の場合に換算した。

鉄筋比 1.2%では、最大荷重(換算値)は3者で殆ど 差はなく、最大荷重後の部材の軟化において、有効高さ の大きい方が緩慢であった。塑性ヒンジ長は断面高さが 大きい方が大きいという考え¹¹⁾もあることから、上記 の差異にはこのことが関係している可能性がある。

(4) 上縁側鉄筋の影響

2.1 節で述べたように、シリーズ実験では支点付近の 部材上縁に補強鉄筋を配置している。U シリーズでは、 支点側の上縁コンクリートにひびわれは確認されなか ったので、この鉄筋の存在は耐力に影響していないと見 ることができる。一方、前述のように NC シリーズの一 部と E シリーズの試験体でこの種のひびわれが発生し た。

図-17 耐力比と上側鉄筋量の関係

そこで、上縁側補強鉄筋が部材の曲げ耐力に及ぼす影響を調べるために、影響の大きいと考えられる E シリーズの鉄筋比 2.5%、付着損失長 1,200mm の場合について、 E25-12d(R0)~E25-12d(R4)の 5 体の試験体を用いて相違 を調べた。試験体番号の記号"R"の後の数値は、配置した D6 鉄筋の本数を表している。

実験結果の最大荷重を比較して図-17 に示す。結果 にばらつきはあるものの、補強筋の増加により曲げ耐力 が増加する傾向にあった。後述のファイバーモデルによ る解析結果を合わせ考えると、シリーズ実験における上 縁側補強鉄筋の本数(2~4本)の違いは、耐力比で 0.05 程度と影響は小さかったと推定される。

4. 解析

4.1 概 要

実験に対するシミュレーションには、ファイバーモデ ルに基づくフレーム解析用の市販ソフトを用いた。

ファイバーモデルによる解析モデルの作成にあたり, 筆者ら⁸⁾が先に提案した解析法と比較することにより, 解析精度を検証した。ここで,先に提案した方法とは, 上縁側に鉄筋のない部材を解析対象とした表計算によ る方法である。

モデル化の検証の後,実際の試験体に合わせ,組み立 て筋と上縁側補強鉄筋を考慮したファイバーモデルに よる解析を行った。

4.2 モデル化の検討

(1)比較対象の解析法の概要

ファイバーモデルに基づく解析の比較対象とした筆 者らの解析法⁸⁾は、Eyre ら³⁾による解析法と同様にはり 理論を基本にしている。理論式を展開し、最後に付着損 失区間の両端の鉄筋とコンクリートの変位の適合条件 を確認するための収束計算を行う。Eyre らとの相違点は コンクリートの応力ーひずみ関係であり、Eyre らが線形 モデルを用いたのに対し、筆者らは非線形の梅村の e 関 数法を用いている。

(2)ファイバーモデルに基づく解析モデル

解析対象部材としては, NC25-12d 試験体において上縁 側補強鉄筋および組立て筋を除去したものを用いた。比 較対象である筆者らの方法⁸⁾では,数値積分のため部材 長手方向に 2.64mm の間隔(1 スパンを 500 分割)で部 材断面を設け,計算している。

ファイバーモデルに基づく解析では、後の付着損失長 の違いに対しても簡単な変更でモデルが使用できるよ う節点間隔に配慮した。図-18 に解析モデルを示す。解 析モデルは、付着損失区間ではコンクリート部を 14 本 の無筋コンクリート棒部材、鉄筋部を1本の棒部材で、 また、付着損失区間の外側は鉄筋コンクリート棒部材で 構成される。3種類の棒部材の軸心は、それぞれ無筋コ ンクリート断面の中心、鉄筋断面の中心および鉄筋コン クリート断面の中心に設定した。鉄筋部の端部はヒンジ 構造とし、コンクリート棒部材の端部と互いに剛体で連 結した。コンクリート棒部材の端部と互いに剛体で連 結した。コンクリート部の断面は 30×30 の要素に分割 した。コンクリート強度は 23N/mm²とした。鉄筋は完 全弾塑性とし、降伏点は 367 N/mm²とした。

(3)解析結果

解析結果として得られた最大荷重は、比較対象の解析 法では 14.9kN,ファイバーモデルによる解析法では 15.6kN となり、後者が 0.7kN (4.7%)大きかった。これ は、付着健全試験体の最大荷重が 30kN 程度であること を考えると、耐力低下の観点からは両者の差は 2%程度 に相当している。

最大荷重時のスパン中央のコンクリートの変位量は, 比較対照の解析法では5.1mm,ファイバーモデルによる 解析法では5.4mmとなり,後者が約6%大きい結果となった。ここで,比較対象の解析法では変位量を断面曲率 を2階積分することにより求めたが,付着損失区間より 外側の短い区間のRC部は簡易的に剛体とみなした。

最大荷重時のコンクリートのひずみ分布について両 解析結果を比較した。上縁コンクリートの部材中央付近 の軸方向ひずみ分布および下縁コンクリートの支点付 近の軸方向ひずみ分布を,図-20に示す。鉄筋の伸び量

(最大荷重に直接影響)や部材の変位に直接的に影響を 与えるこれらの分布は、両解析で概ね一致しているとい える。

以上のように、ファイバーモデルに基づく解析においては、図-18に示すモデルで良好な解析精度が得られていることから、以降のファイバーモデルに基づくシミュ

レーション解析にはこの解析モデルを基本にした。なお、 両者の誤差の原因としては、コンクリートの応力-ひず み関係の相違およびひずみが急激に増加する鉄筋定着 端付近におけるコンクリート部材長さの分割数の相違 などが考えられる。

4.3 部材実験に対する解析

解析はUおよびNCシリーズでは微少変形理論で,E シリーズは,鉄筋の相対変位が生じるので大変形理論に より行った。コンクリートの強度は各シリーズ実験での 平均値を,鉄筋の降伏点には各シリーズでの値を用いた。 試験体に合わせ,組み立て筋と補強鉄筋をコンクリート 上縁側で考慮した。

各試験体の最大荷重の計算値 P_{calf}を表-1に示した。 鉄筋比 1.2%と 2.5%について耐力比を比較して図-15 (解析:破線)に示す。解析値は概ね実験結果を模擬で きているといえる。ただし,鉄筋比 1.2%で NC シリーズ の付着損失長 1,200mm のもので実験との差が大きいが, これは,基準にした NCB12 試験体において,コンクリ ート強度のわりに他の健全試験体に比べて相対的に大 きな値を示した結果と思われる。また,鉄筋比 1.2%の E シリーズ(大変形解析)でも差が生じたが,これについて は今後の課題として検討の余地が残る。

特にNCシリーズの試験体について、荷重-スパン中 央変位関係を実験結果と比較して図-21 に示す。解析 (破線)は荷重増分法によったので最大荷重以降の変位 は表示されていないが、概ね実験を模擬できている。た だし、実験のNC25-12dでは、比較的小さい荷重で部分 的な圧壊が(4.3節参照)あったので荷重増加過程におい て若干差異が生じた。

NC25-12d(R4)の最大荷重時の部材変形を図-22 に示した。実験で認められた変形の様子が解析でも表現されている。

上縁側の補強量を変化させた E25-12d(R0)~E25-12d(R 4)の 5 体の試験体の耐力変化についても、図-17 に示 したように概ね模擬できている。

NC25-12d(R4)試験体の,最大荷重時における鉄筋以外の棒部材(図-18)に発生した曲げモーメント分布を,図-23のcに示す。一方,解析結果の荷重をもとに計算した単純支持梁の曲げモーメント分布は,同図のaのようになる。また,解析結果による鉄筋の全引張り力をもとに、反力としての偏心軸圧縮力によりコンクリート棒部材(上縁鉄筋含む)に発生する曲げモーメント分布を計算すると、同図のbのようになる。解析で得られた曲げモーメントcは、上述の2つの曲げモーメント(a, b)の和になっていることが分かる。前述の支点付近での上に凸の変形および上縁側のひびわれは、付着損失鉄筋の反力としての偏心圧縮力に起因していることが分かる。

4.4 パラメータ解析

図-21 荷重-スパン中央部変位関係(NC シリーズ)

図-23 最大荷重時のモーメント分布 (NC25-12d)

今回,実験は U, NC, E の3種類について行ったが, 実構造物を想定した場合,コンクリート被り量・断面高 さ比は試験体の場合よりも小さく,上縁側の補強筋に相 当する圧縮鉄筋の量は構造物により異なる。そのため, ここでは桁部材の基本特性を得るために,単純化し,被 りコンクリートのないものを対象にファイバーモデル に基づくパラメータ解析を行った。圧縮鉄筋のない部材 の解析結果および圧縮鉄筋量に着目した解析結果につ いて,以下に示す。

(1) 圧縮鉄筋のない部材の解析

部材寸法は,基本的に NC シリーズの場合と同じであ るが,引張り鉄筋の降伏点を 367N/mm², コンクリート 強度を 27N/mm² とした。

実験の場合と同様,引張り鉄筋3種類(1.2%,1.9%, 2.5%),付着損失長3種類(600,900,1,200mm)として パラメータ解析を行い,最大荷重を求めた。その結果を 比較して図-24に示す。図から,同一鉄筋比の場合は, 付着損失長が大きいほど,また付着損失長が大きいとき は鉄筋比が大きいほど耐力低下が生じ,著しいものでは 約70%まで低下することがわかる。なお,付着損失長が 小さいとき,異なる鉄筋比間で耐力比が逆転しているが, これは,耐力比の分母となる付着健全試験体の耐力が, 鉄筋比が小さいときは鉄筋降伏後も荷重が増加するの に対し,鉄筋比が大きいと殆ど荷重が増加しないことに 起因している。

(2) 圧縮鉄筋量の影響

引張り鉄筋比が 2.5%で付着損失長が 1,200mm の場合 について, 圧縮鉄筋比をパラメータとして解析した。解 析では上縁側も被りコンクリートがないものとした。最 大荷重の値を図-25 に図示した。図によれば, 圧縮鉄筋 の存在で付着の健全な試験体も若干の耐力増加が見ら れるが,付着損失試験体では顕著に耐力が増加した。こ れは, 圧縮鉄筋が支点付近上縁のコンクリートひびわれ 発生後の剛性低下を抑制し, その結果,支点付近での塑 性化が抑制されたためである。

すなわち,引張り鉄筋比2.5%の部材で付着損失が生じた場合,圧縮鉄筋が無いときは健全な部材に比べて耐力が約70%に低下するが,圧縮鉄筋が1%程度以上あれば耐力は付着の健全な部材と殆ど同等になるといえる。

5 結 論

引張り鉄筋が部分的に付着損失を生じた鉄筋コンク リート梁の,スパン中央部での破壊に着目した曲げ耐力 に関する実験およびファイバーモデルによる解析を行 った。

付着損失部分で被りコンクリートがある場合,無い場合,および鉄筋がコンクリートの外に露出している場合の3ケースを対象にした。降伏棚が明瞭な鉄筋を用い,鉄筋比1.2%,1.9%,2.5%,付着損失長がスパン長の0.45倍,0.68倍,0.91倍に変化させた2点載荷による単純

図-24 耐力比と付着損失長の関係(単鉄筋部材)

図-25 曲げ耐力と圧縮鉄筋量の関係 (引張鉄筋比 2.5%, 付着損失長 1.200mm)

支持部材の実験およびその解析を行った。これらの結果 は、次のようにまとめられる。

①被りコンクリートの有無や鉄筋露出に関わらず,付 着損失長が大きいほど,また鉄筋比が大きいと,曲げ耐 力が低下する。耐力低下の程度は,被りコンクリート有 り,被りコンクリート無し,鉄筋露出の場合,の順に大 きくなる。被りコンクリートがある部材では,耐力の低 下はわずかであった。これらの特徴は,解析によっても 確認された。

②支点付近の部材上縁側に軸方向鉄筋が配置された (耐力低下が緩和される)場合であっても,引張鉄筋比 が 2.5%の場合で付着損失長が大きい(スパン長の 0.91 倍)と,曲げ耐力は被りコンクリートがあるもので 95% に,被りコンクリートが無いもので 80%に,また鉄筋が 露出しコンクリートとの間に隙間があるもので 60%に 低下した。これらの耐力低下は,解析により概ね推定で きる。

③被りコンクリートの有無や鉄筋露出に関わらず,付 着損失が大きいと,荷重の増加に伴いスパン中央部の圧 縮縁コンクリートのひずみ増加が著しくなり,また,支 点付近ではコンクリート部に偏心圧縮力が作用して上 に凸の変形を起こすとともに,下縁側に大きな圧縮ひず みが生じる。曲げ耐力の低下には、これらが大きく関与 していることが分かった。部材の圧縮鉄筋の存在は、主 に後者の影響を緩和する効果が大きい。これらの特性は 解析によっても確認された。

④特に鉄筋とコンクリートの間に隙間のある付着損 失部材では、部材変形に伴って生じる鉄筋の相対移動は、 クリチカル断面の一つであるスパン中央で、いわゆる断 面の有効高さを減少させ、耐力低下の一因になっている。 このことは解析によってもほぼ確認できた。

⑤今回の実験の範囲(鉄筋比1.2%の場合)では、耐力 低下に及ぼす断面の有効高さの影響は見られなかった が、最大荷重後の軟化特性には相違がみられた。

⑥実構造物の場合は被りコンクリートの厚さが模型 試験体の場合に比べて断面寸法上,相対的に小さいこと から,被りコンクリートのない部材を対象に圧縮鉄筋の ない場合のパラメータ解析を行った。その結果,引張鉄 筋比が 2.5%の場合で付着損失長が大きい(スパン長の 0.91 倍)と,曲げ耐力は70%まで低下することが分かっ た。圧縮鉄筋が存在すると,圧縮鉄筋量の増加に伴い耐 力の低下は次第に緩和され,上記条件(引張鉄筋比が 2.5%,付着損失長がスパン長の0.91 倍)では,圧縮鉄筋 比が 1%程度以上あれば耐力の低下は無視できるほど小 さいことが分かった。

謝辞

実験を行うにあたり、岡山大学の阪田憲次名誉教授お よび綾野克紀教授にお世話になりました。記して感謝の 意を表します。

本研究は,財団の助成による各段階の研究成果を総合 的な見地から取りまとめたものであります。基礎研究に もかかわらずご支援を頂きました八雲環境科学振興財 団,ウエスコ学術振興財団および鹿島学術振興財団に感 謝の意を表します。

参考文献

1) Al-Sulaimani, M.Kaleemullah, I.A.Basunbul, and Rasheeduzzafar: Influence of Corrosion and Cracking on Bond Behavior and Strength of Reinforced Concrete Members, ACI Structural Journal, pp.220-231, March-April 1990

- 2) 李 翰承,友澤史紀,野口貴文:鉄筋の腐食がその力学的 性能の低下に及ぼす影響,コンクリート工学年次学術 論文報告集, Vol.17, No.1, pp.877-882, 1995
- J.R.Eyre and M.-A.Nokhasteh: Strength assessment of corrosion damaged reinforced concrete slabs and beams. Pro. Instn Civ. Engrs Structs & Bldgs, pp.197-203, 1992
- J.Cairns and Z.Zhao: Behaviour of concrete beams with exposed reinforcement. Pro. Instn Civ. Engrs Structs & Bldgs, pp.141-154, 1993
- M.Raoof and Z.Lin: Structural characterisitics of RC beams with exposed main steel, Proc.Instn Civ. Engrs Structs & Bldgs, 122, pp.35-51, Feb., 1997
- 村山八洲雄,金 相昊,武田絵里,西村 伸一:鉄筋の付着損失がRC部材の曲げ耐荷性状に及ぼす影響, コンクリート工学年次論文集, Vol.30, No.3, pp.733-738, 2008
- 7) 村山八洲雄,津野将太郎,井ノロ 諭,鎌田 光: 露出鉄筋を有する鉄筋コンクリート部材の曲げ耐力 に関する実験的研究,コンクリート工学年次論文集, Vol.31, No.2, pp.697-702, 2009
- 津野将太郎,村山八洲雄,大串 透,:付着損失が生じた RC 部材の曲げ耐力評価法に関する解析的研究, コンクリート工学年次論文集, Vol.31, No.2, pp.703-708, 2009
- 9) 土木学会 2002 年制定コンクリート標準示方書
- 10)小柳, 六郷, 岩瀬: コンクリート中の鉄筋の応力-ひずみ関係と曲げを受けるRCはりの終局挙動, 土木 学会論文集 第384 号/V-7, pp.83-92, 1987 年
- M.Virougeux: Non-linear analysis of externally prestressed structures. La Technique Francaise du beton precontraint. Eleventh FIP Congress. pp.165-193, Hambourg 1990

(2009年9月24日受付)