鉄筋腐食させた R C 梁の非破壊検査に基づく残存曲げ耐力算定に 関する基礎的研究

Fundamental study on a calculation of flexural capacity of RC-beams with corroded re-bar based on Non-Destructive Inspections

黑田 一郎*, 村上 将也**, 山本 佳士***, 古屋 信明**** Ichiro Kuroda, Masaya Murakami, Yoshihito Yamamoto, Nobuaki Furuya

*工博,防衛大学校准教授,システム工学群建設環境工学科(〒239-8686 神奈川県横須賀市走水 1-10-20) ** 防衛大学理工学研究科前期課程,土木環境工学専攻(〒239-8686 神奈川県横須賀市走水 1-10-20) ***工修,防衛大学校助教,システム工学群建設環境工学科(〒239-8686 神奈川県横須賀市走水 1-10-20) ****工博,防衛大学校教授,システム工学群建設環境工学科(〒239-8686 神奈川県横須賀市走水 1-10-20)

> This paper deals with application of a Non-Destructive actually measured Inspections on the calculation of residual flexural capacity of RC-beams with corroded re-bar. Reliability of the Non-Destructive Inspections is verified by comparison with actual measured dimensional values of corroded re-bar. And, the calculated residual flexural capacity is evaluated with loading test of RC-beams. In addition, effects of the diameters and covers of re-bar on the Non-Destructive Inspections are discussed.

Key Words: electric corrosion, corrosion rate, non-destructive inspection, flexural capacity キーワード: 電食, 腐食率, 非破壊検査, 曲げ耐力

1. はじめに

既存の鉄筋コンクリート(以下, RC)構造物の高齢化 が問題となっているなか,道路橋に関しては2010年以 降には供用年数が50年を超える橋梁が急激に増加し, 2031年には全橋梁の50%に達するりとされており, RC 構造物の老朽化に伴う劣化から生じる危険性や,将来的 な安全性について定量的に評価する必要性が高まって きている.そこで,既存 RC構造物に対し比較的容易に 内部の状況を把握できる非破壊検査を行うことにより 性能の変化を察知し,耐久性を把握する技術の確立が, 社会基盤の高寿命化を図る上で必要不可欠である.

現在,劣化 RC 供試体において,破壊試験から求めた 劣化鉄筋の腐食率と耐荷力の関係については多くの研 究 ²⁰がなされている.また,超音波伝播速度等の各種非 破壊検査法が実用化されつつある状況³⁰にある.しかし, これらの非破壊検査によってコンクリート構造物内部 の劣化性状に関する情報を知ることはできても,得られ た情報を基に,構造物に残存している耐荷力を推定する 手法は未だ確立されていない.すなわち,劣化構造物の 残存耐力推定には破壊検査が必要不可欠な現状である. そのため,著者らは各種非破壊検査結果と劣化鉄筋径に 相関があることを明らかとし、この相関を基に非破壊検 査から鉄筋径を推定することで劣化 RC 供試体の曲げ耐 力の評価を試みた ⁴ が、単一断面諸元(かぶり・鉄筋径) における知見であり、曲げ耐力評価の汎用性についての 考察が不十分であるなど基礎的段階である.

そこで、本研究では RC 梁の断面諸元と鉄筋腐食量を パラメータとした曲げ耐力と劣化鉄筋の最小断面積の 関係に注目し、供試体を増やして非破壊検査による実験 的検討を行ったものである.

実験においては、まず、断面諸元(かぶり・鉄筋径) の異なる3種類のRC梁供試体に対して様々な腐食率を 目標として電食を行った.それに伴い非破壊検査として 超音波伝播速度および腐食ひび割れ幅の計測を実施し、 これらの非破壊検査結果と、載荷実験後に梁からはつり 出した腐食鉄筋径の実測値との相関関係について調べ た.次に、この相関関係を基に、非破壊試験結果から腐 食鉄筋の径を推定し(鉄筋をはつり出すことなく)、そ の推定値を土木学会コンクリート標準示方書 ⑤ に基ず く曲げ耐力算定法に入力することによって梁の曲げ耐 力推定値を算出することを試みた.このようにして算出 した曲げ耐力推定値を、曲げ載荷実験結果と比較するこ とによって手法の妥当性を検討した.

2. 実験概要

2.1 供試体

供試体の種類を表-1, 寸法および配筋を図-1 に示 す. 鉄筋は異形鉄筋 (D13 および D10, 材質はいずれも SD345)を引張側のみに1本配置した. さらに, せん断 補強筋 (D6, SD295A)を支点付近のみ 50mm, その他 は 100mm 間隔で配筋している.

B1~B3 シリーズ供試体は、D13 鉄筋をかぶり 20mm で配筋した供試体であり、B1、B2、B3 の違いは目標腐 食率である. B4~B6 シリーズ供試体は、B1~B3 シリー ズとかぶりは同じで鉄筋径をD10に変更した供試体であ り、B7~B9 シリーズ供試体は、B1~B3 シリーズと同じ D13 鉄筋を有し、かぶりを 30mm に増やしている.

コンクリートの配合を表-2に,鉄筋の物性値を表-3に示す.また,コンクリート強度(平均値)を表-1 に合わせて示す.

2.2 鉄筋腐食方法

鉄筋腐食方法には,鉄筋を電気的に腐食させる方法(以下,電食)を用いた.供試体の底面側を図-2に示すように3%塩化ナトリウム水溶液へ浸漬し,引張鉄筋を直流電源の正極側,銅板を負極側に接続した後,直流電流0.6Aを所定時間(表-4参照)通電した.なお,スターラップは引張鉄筋と絶縁しており,腐食させないようにした.目標とする引張鉄筋の腐食率(腐食により失った鉄筋質量の腐食前の鉄筋質量に対する比率)を3%,10%,30%とした.目標腐食率への通電時間は既往の研究6により決定した.また,直流電流0.6Aを保持するため1日2回の電流調整を行った.

本実験で使用する各供試体のシリーズ,供試体番号お よび目標腐食率等を表-1に示す.各腐食率に対して3 体の劣化供試体を作製し,耐力の比較用として腐食率 0%の健全供試体もシリーズ毎に1体用意した.

2.3 非破壊検査

電食後の劣化状況を把握するために、超音波伝播速度 および腐食ひび割れ幅を計測した.超音波伝播速度につ いては、相対的な劣化の程度を把握するために電食前に も計測を行った.また、コンクリートの含水率が計測値 に影響することから、養生後および電食水槽から取り出 した後に、1日以上乾かした状態で計測を実施した.各 検査の計測点(P1~P10)を図-3に示す.

(1) 超音波伝播速度

超音波伝播時間の測定は、飽和増幅方式により実施した [¬]. 測定機器は、印加電圧 1000V, 公称周波数 28kHz, 探触子 20 φ のものを使用した. 探触子をあてる位置は、 図-3に示すように主鉄筋に沿う形とし、各計測箇所に おいて底面へ探触子を並べて配置する表面法、側面から 探触子で挟み込む対称法の, 2 通りで計測した. これは、

表-1 供試体の種類およびコンクリート強度

シリーズ	供試体 番号	目標 腐食率	鉄筋径	かぶり	主鉄筋 比	コンクリート強度 (N/mm²)				
	н	(%)		(mm)	(%)	圧 縮	引 張			
B 1		3		20		28.4	2.8			
B2	5 6 7 8	10	D13		1.4	32.8	2.6			
B3		30				35.5	2.7			
B4	$13 \\ 14 \\ 15 \\ 16$	3				34.9	2.1			
B5		10	D10	20	0.8	34.7	2.3			
B6		30				33.4	2.0			
B7		3		30		39.7	2.2			
B8	$ \frac{\overline{29}}{30} 31 32 $	10	D13		1.4	37.1	2.3			
B9	$\frac{33}{34}$ $\frac{35}{36}$	30				37.3	2.4			
<側	面>		<u>2</u> 等曲	2 <u>80</u> →↓ げ区間 ∫	載荷	点				
\square	-									
	1									
	/		12	260	/	/				
,</td <td>/ </td> <td>15 (D4</td> <td>14 - DC2 4</td> <td>460</td> <td>/</td> <td></td> <td></td>	/ 	15 (D4	14 - DC2 4	460	/					
	D10 SD3	040 (B4/ 345 (R1~	~B6ン! ~B3 B7	ノーム) ~Bダン	リーズ)	D6 SD2	93A /			
) / 胖乐i	まって.	, 1, (1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1	10,00	~~~	<u> </u>					
< PH		80→ d=113	<u>140</u>		d=115		d=113			
	B1~B3	一 <u> D13</u> シリーズ	° B4∼	* -B6シリ	<u>D10</u> ーズ F		→ <u>D13</u> ンリーズ			
	50	· 図— 1	山供諭	式体概要	۔ ب		-			
			V 14		`/					

衣-2	コンク	ッー	トの配合	

粗骨材の	水セメント			細骨材	単位量(kg/m ³)								
最大寸法 G _{max}	比 W/C	スランプ	空気量	率 s/a	水	セメント	細骨材	粗骨材	混和剤 AE剤				
(mm)	(%)	(cm)	(%)	(%)	W	С	S	G	(cc)				
20	60	10	6	40.5	175	292	680	1060	93.4				

表-3 鉄筋の物性値

鉄	筋	降伏強度	引張強度			
呼び径	鋼種	(N/mm²)	(N/mm²)			
D13	SD345	367	534			
D10	SD345	354	507			
D6	SD295A	320	504			

伝播経路の異なる2計測法を用いることにより劣化の程 度を多角的に把握するためである.

また,探触子間隔を伝播時間で除すことで超音波伝播 速度を算出する.なお,算出された伝播速度は探触子中 間位置(計測点)での速度と定義した.

評価には、各計測箇所のコンクリート内部状況(骨材 のばらつき、空隙形状、含水量等)による影響を打ち消 すため、次式(1)に示す伝播速度比を用いた.

伝播速度比 =
$$\frac{電食後の伝播速度 (m/s)}{電食前の伝播速度 (m/s)}$$
 (1)

(2) ひび割れ幅

電食後に発生する供試体底部の腐食ひび割れの幅を, 図-3に示した各計測点においてクラックスケール(最小目盛0.05mm)を用いて計測した.なお,B9シリーズについては,底面に加えて側面の一部にも腐食ひび割れが発生したため,側面も含めた最大腐食ひび割れ幅を 当該断面の測定値とした.

2.4 載荷実験

載荷実験では、図-1に示したように載荷点間隔 280mm,支点間距離1260mmとした静的2点曲げ載荷 を行った.鉛直変位は載荷点の値を平均したものとする. 各供試体の最大耐力を表-5に示す.

3. 電食結果

3.1 供試体の劣化状況

鉄筋腐食により生じた供試体底部の典型的な腐食ひ び割れ状況を写真-1(ひび割れを強調表示)に示す. 目標腐食率 3%の B4, B7 シリーズにおいては底面梁 軸方向へ引張鉄筋に沿った腐食ひび割れが断続的に生 じていた.それ以外の全供試体(目標腐食率 3%であ る B1 シリーズを含む)においては,底面へ全体的に 腐食ひび割れが生じていた.これは目標腐食率 3%程 度の腐食初期段階では,鉄筋径が小さい供試体(B4 シリーズ)や,かぶりが大きい供試体(B7 シリーズ)

○:せん断補強筋と引張鉄筋の接触個所は絶縁処置を実施

表-4	诵雷時間
1X I	

シリーズ	通電時間 (hr.)	シリーズ	通電時間 (hr.)	シリーズ	通電時間 (hr.)
B1	105	B4	59	B7	108
B2	351	B5	198	B8	360
B3	1048	B6	594	B9	1076

図-3 非破壊検査計測点および探触子配置(供試体底部)

写真-1 電食後の腐食ひび割れ進展状況(供試体底部)

表-5 引張鉄筋の腐食率と最大耐力

	/++⇒+/+-	腐	腐食率(%)		最大		(#1)(#1)(#1)(#1)(#1)(#1)(#1)(#1)(#1)(#1)		最大		#+⇒+/+-	腐食率(%)			最大		
シリーズ	供訊14 乗旦	目標	全体	等曲	耐力	シリーズ	供訊(本) 来旦	目標	全体	等曲	耐力	シリーズ	供訊体 乗旦	目標	全体	等曲	耐力
	宙方	腐食率	区間	区間	(kN)		留方	腐食率	区間	区間	(kN)		宙方	腐食率	区間	区間	(kN)
	1		2.3	3.1	22.7		13	3	3.3	8.1	15.0		25	3	1.6	2.9	27.2
R 1	2	3	2.4	3.4	23.5	B4	14		3.3	7.7	13.6	B7	26		0.9	0.1	26.0
DI	3		2.8	5.0	20.3		15		2.8	6.8	14.3	D7	27		1.1	1.6	27.1
	4	0			23.1		16	0			16.0		28	0			26.8
	5		14.2	15.8	21.1	B5	17	<u> </u>	9.1	11.8	14.0	DQ	29		6.5	9.7	25.9
BJ	6	10	13.9	19.0	20.5		18		8.7	14.9	14.0		30	10	7.1	6.9	24.0
$\mathbf{D}\mathcal{L}$	7		13.4	12.0	19.6		19		8.9 15.0 1	14.2	Do	31		5.3	5.5	24.5	
	8	0			24.9		20	0			15.2		32	0			26.4
	9	30	25.3	24.0	16.4		21		26.8	25.6	4.6		33		28.5	31.7	14.5
B3	10		26.1	28.2	15.0	R6	22 23	30	28.4	32.8	9.9	B9	34	30	26.8	39.0	12.9
	11		31.6	30.3	10.6	00			26.0	28.8	10.0		35		24.0	26.2	15.7
	12	0			22.5	1	24	0			15.9		36	0			26.9

では、表面への腐食ひび割れの到達が遅くなることを示している.

目標腐食率 30%の B9 シリーズにおいては底面のみな らず側面へも引張鉄筋に沿った腐食ひび割れが部分的 に進展していた.その他の全供試体においては側面およ び上面には表面にひび割れは認められなかった.ただし, B3, B6, B9 シリーズの各供試体において数箇所は,ス ターラップに沿った微小なひび割れが上面および側面 の一部に発生していた.これは,引張鉄筋とスターラッ プ間の絶縁被膜が長期の電食により劣化し,スターラッ プの一部が腐食したために発生したものと考えられる.

3.2 鉄筋の腐食状況

載荷実験後に鉄筋をはつりだし、文献®を基に10%ク エン酸二アンモニウム水溶液に浸漬後、黒皮および腐食 生成物の除去を行った.目標腐食率の増加に伴う腐食状 況、鉄筋表面の腐食形態(典型例)を写真-2に示す. 腐食率の増加に伴い、鉄筋断面の減少がみられ、さらに 一律に劣化せず局所的な劣化が進む傾向にあった.また、 鉄筋上面よりも下面において腐食が進行する傾向が全 ての供試体において見られた.これは、鉄筋下面のかぶ りが一番小さいことや、ブリーディングによる鉄筋下面 の水膜が影響したと考えられる.

(1) 腐食率

除錆後の引張鉄筋の質量を測定し、健全時(黒皮も含 む)に対する質量減少量から、各供試体の腐食率を求め た.各供試体の腐食率を全体区間(両フック部を含む鉄 筋の全長)および等曲げ区間に分類して表-5に示す.

全体区間の腐食率は、各シリーズ内でのばらつきが目 標腐食率の約2割と概ね目標腐食率に近い結果となった.

なお、鉄筋腐食は不均一に進行する傾向にあるため、 今回の実験では等曲げ区間腐食率は B2 シリーズでは 15%程度(目標は10%), B4 シリーズにおいては8%程 度(目標は3%)となった.また、B7 シリーズについて は1%とほぼ腐食していなかった(目標は3%).

(2) 鉄筋径

計測箇所は図-5(a) に示すとおり,引張鉄筋中央 から左右へ50mm 間隔で計25箇所とした.計測手法は 最大径とその直角方向の寸法をノギス(精度0.05mm) で計測した.

ノギス最小径から断面積を算出した場合,実際の断面 積を概ねの精度で得られるが,鉄筋の断面形状が扁平な 形状となっている場合は実際よりも断面積が小さく算 出されることが既往の研究 ⁹で指摘されている.また, 電食による鉄筋腐食はかぶりが最小である部分から進 行する傾向にあることから,鉄筋断面は扁平な形状とな ることが多い.そのため,鉄筋断面の最大径およびその 直角方向の2寸法の平均値を各計測点における鉄筋径と した.各シリーズにおける典型的な劣化鉄筋径の分布を 図-5(b)~(d)に示す.また,凡例中のNOは表-1,5

の供試体番号であり、それに続く括弧内の数値は表-5 に示した鉄筋の等曲区間の腐食率および標準偏差を表 す.全ての劣化供試体について断面諸元(鉄筋径,かぶ り)の違いに関わらず、腐食率の増加に伴い鉄筋径のば らつきを表す標準偏差が大きくなる傾向にある.すなわ ち、腐食率の増加に従い鉄筋径の局部的減少の程度およ び箇所が増加する傾向にある.

4. 鉄筋径比と非破壊検査結果の相関

電食後の鉄筋径を公称径で除したものを鉄筋径比と 定義した.これと前述の非破壊検査の結果との相関を検 討する.各供試体において、図-3に×印で示した 10 箇所の非破壊検査計測点での鉄筋径比と各種非破壊検 査結果の関係をシリーズごとに回帰直線も併せて図ー 6(a)~(f)に示す.なお,非破壊検査において鉄筋腐食 による腐食ひび割れが発生する以前の微小な鉄筋劣化 を検知することは困難であるため、非破壊検査結果と鉄 筋径比の初期値は一致していない。

超音波伝播速度比には、表面法と対称法の両計測値の 平均値を用いた.図-6の(a)~(c)に示すとおり超音波 伝播速度比が小さくなるに従い、鉄筋径比も小さくなる 傾向にある.これは、電食に伴い発生した腐食生成物に よって、内圧が生じることで鉄筋周囲のコンクリートに 発生する微細なひび割れが弾性波を回析させるためで ある.なお、回帰直線による鉄筋径比(推定値)と鉄筋

径比(実測値)との相関係数は断面諸元ごとに(a)0.528 (b)0.497 (c)0.784 である. 断面諸元により相関係数は 異なるが,回帰直線を用いて RC 構造物内部の鉄筋腐食 量を定量的に推定できる可能性が指摘できる.

次に、腐食ひび割れ幅との関係を図-6(d)~(f)に示 した.腐食ひび割れ幅が大きくなるにつれ、鉄筋径比が 小さくなる傾向がみられる.また、回帰直線よる鉄筋径 比推定値と実測値との相関係数が断面諸元ごとに (d) 0.580 (e) 0.530 (f) 0.747 であり、鉄筋径比と腐食ひ び割れ幅の間には、各断面諸元において超音波伝播速度 比と同程度の相関関係が認められた.

なお、図-6に示した超音波伝播速度比および腐食ひ び割れ幅の回帰直線の傾きは、(a)より(b)と(c)が、(d) より(e)と(f)が急になる傾向にある.言い換えれば、 鉄筋径比 0.90 に相当する超音波伝播速度比は、B1~B3 シリーズ(図-6(a))では0.89 程度であるのに対して、 鉄筋径が小さい B4~B7 シリーズ(図-6(b))では0.95 程度、かぶりが大きな B7~B9 シリーズ(図-6(c))で は0.93 程度であり、鉄筋径が小さい供試体やかぶりが大 きな供試体では鉄筋径比の減少に対して超音波伝播速 度比の変化が鈍感である.腐食ひび割れ幅も、同様な傾 向を示している(図-6(d)~(f)).

5. 曲げ載荷実験結果

各供試体の荷重と変位の関係を、各シリーズ・各目標 腐食率の典型的な供試体を例にして図-7(a)~(c)に 示す.図中の×印は鉄筋破断を表している.また、凡例 中のNOは表-1、5の供試体番号であり、それに続く 括弧内の数値は表-5に示した鉄筋の等曲げ区間の腐 食率を表す.

すべての供試体は鉄筋降伏後に最大荷重に達し,等曲 げ区間の梁上縁コンクリートの圧壊が始まるとともに 荷重を減じていった.最終的な破壊モードは,断面諸元 に関わらず目標腐食率3%,10%のシリーズ(B2シリー ズの1体(NO.7)を除く)のすべてが鉄筋比1.4%および 0.8%から推定されるとおりの,比較的大変形後の曲げ引 張破壊に至ったが,目標腐食率30%の全供試体および目 標腐食率10%における供試体1体(NO.7)が最大荷重 以降での鉄筋破断による曲げ引張破壊であった.このこ とから,腐食量が多くなるにしたがい,鉄筋破断を伴う 脆性的な破壊へと移行する傾向が顕著に現われている. なお,鉄筋破断を生じたのはすべて等曲げ区間であり, コンクリート上端の圧壊もすべて等曲げ区間で生じた ことから,これ以降の考察においては鉄筋の腐食率とし て等曲げ区間の腐食率を用いることとする.

ここで最大荷重すなわち曲げ耐力に着目するならば 断面諸元に関わらず、当然のことながら鉄筋の腐食率が 大きくなるほど曲げ耐力が小さくなっていることがわ かる.ただし、図-7(a)のNO.5とNO.7および(b)の

NO.14 と NO.19 においては曲げ耐力と腐食率の関係が 逆転している.これは目標腐食率 10%付近から鉄筋の局 所的劣化の程度が激しくなる(図-5)ことからもわか るように、腐食量がわずかであっても等曲げ区間へ均一 に分布せず、局所的に集中したために曲げ耐力の低下が 著しくなったと考えられる.

次に,各供試体の曲げ耐力実測値を腐食させていない 健全梁(腐食率 0%)の曲げ耐力で除すことで曲げ耐力 比を算出し,等曲げ区間の実測腐食率との関係として図 -8に示す.断面諸元ごとに緑,青,赤色に分けて曲げ 耐力比(実測値)と腐食率(実測値)の相関分布を直線 回帰し,その回帰直線による推定値と曲げ耐力比(実測 値)との値の相関係数を求めたところ,それぞれ 0.906, 0.733, 0.972 と極めて高い数値であった.

それぞれの回帰直線における傾きには最大 0.0009 の 差しかないため、曲げ耐力比-腐食率の関係には断面諸 元の影響は無視できると言える.そこで、各断面諸元に おけるデータをまとめて近似直線を求めたところ、相関 係数 0.878 の次式(2)を得た.

$$y = -0.0139 x + 1$$
 (2)

ここで、yは曲げ耐力比、x は腐食率(%)である. このように、腐食率との強い相関性を示した曲げ耐力比 であるが、鉄筋が断面積を失ったのと同じ割合でこれら が減じているわけではないことに注意しなければなら ない.例えば、腐食率(x)を 30%として式(2) に代入す れば、曲げ耐力比(y)は 30%減じた値ではなく、約 0.6 (約 40%減)の値が得られており、鉄筋断面積の減少よ りも曲げ耐力比の低下率の方が約1割大きくなっている.

次に、図-9に等曲げ区間腐食率と載荷実験によって 得られた曲げ耐力低下率(各シリーズ(B1~B9)におけ る平均値)の関係を示す.曲げ耐力低下率とは、劣化供 試体の曲げ耐力が各シリーズの健全供試体の曲げ耐力 から低下した割合である.目標腐食率 3%(B1,B4, B7シリーズ)、10%(B2,B5,B8シリーズ)において は腐食率と曲げ耐力低下率は概ね等しくなっているが、 目標腐食率 30%(B3,B6,B9シリーズ)では腐食率よ りも曲げ耐力低下率の方が大きくなる傾向にある.

以上述べてきたように、腐食率以上に曲げ耐力比が低 下するという傾向から、曲げ耐力が腐食率の増加に伴い 等曲げ区間の平均腐食率よりも同区間での局所的腐食 の影響を強く受けると考えられる.そのため、劣化供試 体の曲げ耐力を推定するには鉄筋径の最小値を用いる ことが必要である.

6 劣化鉄筋の断面積推定値(破壊・非破壊)から算出 した曲げ耐力推定値の妥当性評価

6.1 非破壊検査結果による断面積推定値と実測値の比較 これまでの検討から,超音波伝播速度比ならびに腐食

図-9 等曲げ区間腐食率と耐力低下

図-10 鉄筋断面積推定値と実測値の比較

ひび割れ幅が、はつり後に実測された鉄筋径比と相関性 を持つことが明らかとなった(図-6参照). なお、劣 化供試体の曲げ耐力は劣化鉄筋径の最小値に影響を強 く受けることから、最大荷重の作用する等曲げ区間にお ける局所的な断面積減少量を精度良く探知することが 非破壊検査において重要である.

そこで,超音波伝播速度比の計測範囲を非破壊検査計 測箇所計10箇所の中から等曲げ区間に対応する P4~ P7の計4箇所(図-3)に限定し,この各非破壊検査結 果を該当断面諸元の直線回帰式(図-6(a)~(f))へ代入 することで得られた鉄筋径比の中で,最小の値を最小鉄 筋径比推定値とした.その最小鉄筋径比推定値に公称径 を積した値を最小鉄筋径推定値とし,この最小鉄筋径推 定値を直径として円周率から求まる断面積を最小鉄筋 断面積推定値 MA&と定義する.

同様に、腐食ひび割れ幅から推定される最小鉄筋断面 積を N2As とする.また、はつり後に計測された同区間の 最小鉄筋径実測値から断面積へ換算した値を最小鉄筋 断面積実測値 pAs とし、3 者の比較を試みる.非破壊検 査結果から推定された N1As, N2As およびノギスで計測し た pAs を各シリーズで平均し、公称断面積で除すること

供診	式体言	者元	E 曲げ耐力 (kN・m)			3/11	_ 7'	」 曲げ耐力 (kN・m)				3711	ーブ	曲げ耐力 (kN・m)				
目標	票腐1	食率	実測値	破壊推定値	非破壊	推定值	~ ~ ~		実測値	破壊推定値	非破壊	推定值	~ 9		実測値	破壊推定値	非破壊	推定值
(%)	シリ	ーズ	載荷実験	ノギス	超音波	ひび割れ		No	載荷実験	ノギス	超音波	ひび割れ		No	載荷実験	ノギス	超音波	ひび割れ
(70)		No	$(_{EX}M_{u})$	$(_{\rm D}M_{\rm u})$	$(_{N1}M_{u})$	$(_{N2}M_{u})$		INO	$(_{EX}M_{u})$	$(_{\rm D}M_{\rm u})$	$(_{N1}M_{u})$	$(_{N2}M_{u})$		INO	$(_{EX}M_{u})$	$(_{\rm D}M_{\rm u})$	$(_{N1}M_{u})$	$(_{N2}M_{u})$
		1	5.57	4.23	4.09	4.25		13	3.68	2.28	2.25	2.43		25	6.65	4.70	4.78	4.80
3	D 1	2	5.75	4.33	4.15	4.25	DЛ	14	3.33	2.08	2.37	2.43	D7	26	6.36	4.82	4.93	4.91
	DI	3	4.96	4.06	4.27	4.20	D4	15	3.49	2.26	2.31	2.43	Б7	27	6.63	4.81	4.93	4.91
0		4	5.65	\backslash	\langle	\setminus		16	3.93	\setminus	\setminus	\setminus		28	6.58	\setminus	\langle	
		5	5.18	4.10	3.71	3.96		17	3.43	2.25	2.13	2.17		29	6.35	4.17	4.05	4.19
10	DЭ	6	5.03	3.67	3.90	4.11	D 5	18	3.43	2.06	2.13	2.17	ЪΫ	30	5.89	3.70	3.38	3.87
	$\mathbf{D}_{\mathbf{Z}}$	7	4.79	3.60	4.14	4.26	ЪJ	19	3.47	1.95	2.25	1.93	во	31	6.00	4.17	3.51	4.19
0		8	6.11		$\$			20	3.72					32	6.46	\land		
		9	4.01	2.62	4.23	4.13		21	1.12	1.71	2.01	1.87		33	3.56	2.00	3.38	3.01
30	B 3	10	3.66	2.89	3.98	4.13	R6	22	2.43	1.36	2.01	2.05	BO	34	3.15	2.22	3.26	3.60
	ЪЗ	11	2.59	2.81	3.67	3.31	ЪU	23	2.45	1.56	2.13	1.99	D7	35	3.85	2.66	2.88	3.47
0		12	5.50		\nearrow	\nearrow		24	3.90	\nearrow		\nearrow		36	6.59	\nearrow	\nearrow	\geq
			緑(_{EX} N	$I_u >_D M_u $	たは _{EX} M	$>_{\rm N1,2}M_{\rm u}$:実	測値	より安全(則に評価	赤(_{EX} M	$I_u < M_u $	たは	EXM	$<_{\rm N1,2}M_{\rm u}$:実測値。	より危険値	川に評価

表-6 非破壊検査結果から推定した残存曲げ耐力の評価

で鉄筋断面積減少率を求めた.そして,各シリーズの等曲げ区間腐食率平均値を横軸として比較した結果を図 -10に示す.各推定値(超音波伝播速度比,腐食ひび 割れ幅)における鉄筋断面積減少率は等曲げ区間腐食率 に関係なく概ね同じ値(最大誤差5.1%)となった.

また,等曲げ区間腐食率15%付近までの鉄筋断面積減 少率の実測値と推定値間の誤差は最大でも10%程度で あった.ただし,等曲げ区間腐食率30%付近になると鉄 筋断面積減少率の実測値と推定値間の誤差は概ね30% と増加する結果となった.このことから,等曲げ区間腐 食率が増加するに伴い,鉄筋断面積減少率の実測値と推 定値間の誤差は大きくなる傾向にある.

すなわち,等曲げ区間腐食率15%付近までは断面諸元 に関わらず,非破壊検査結果により推定された等曲げ区 間の最小断面積推定値(N1As, N2As)の各シリーズ平均 値は,実測断面積(DAs)の各シリーズ平均値を約10% の誤差で推定可能であった.また,腐食率30%付近にお ける非破壊検査推定値は腐食率15%までの推定値と比 較して約3倍の誤差が生じる結果となった.そのため, 腐食率15%付近以降まで劣化の進行した劣化供試体に 対しては,非破壊検査を用いて最小断面積を推定するこ とは信頼性に欠けると言える.

6.2 曲げ耐力実測値による推定値の検証

次の段階として、超音波伝播速度から求めた等曲げ区 間の最小鉄筋断面積 $n_i A_s$ を有する断面にて、示方書 \circ に よる等価矩形応力ブロックを用いた曲げ耐力算定法で 算出した曲げ耐力非破壊推定値 $n_i M_u$ 、同様に腐食ひび 割れ幅から算出した $n_2 M_u$ 、ノギスで計測した nA_s を用い て同算定法から求めた曲げ耐力破壊推定値を nM_u と定 義する. なお、これらの推定値には安全係数を付与して いない. そして、載荷試験によって得られた曲げ耐力実 測値を exM_u とし、この4者の比較検討を試みる. 全供試体における非破壊推定値 N1Mu, N2Mu, 破壊推 定値 DMuおよび実測値 EXMuを表-6に示す.また,推 定値 (N1Mu, N2Mu, DMu)を実測値 (EXMu) にて評価 し、実測値よりも下回る安全側の評価となったケースを 緑色で、反対に実測値を上回る危険側の評価となったケ ースを赤色の網掛けで表-6中に示している.

(1) 破壊推定値 DMuの実測値 EXMuによる検討

ノギスによって測定した鉄筋径最小値 $_{DAs}$ を示方書に よる算定法に入力して求めた曲げ耐力 $_{DMu}$ は、実測値 $_{EXMu}$ より B1-3 シリーズでは約 2 割、B4-9 シリーズで は約 3 割小さく、安全側(緑)に求まる傾向にあった. ただし、目標腐食率 30%シリーズでは NO.11 および NO.21 の 2 ケースにおいて $_{DMu}$ は $_{EXMu}$ より約 1~5 割 の範囲で大きな値を示し、危険側(赤)の推定となって いる.

(2) 非破壊推定値 N1Mu, N2Muの実測値 EXMuによる検討

目標腐食率 3%, 10%のシリーズでは, すべてのケースで_{N1}Mu, N2Muは共に EXMuを約 1~4 割(平均 3 割)の範囲で下まわる安全側の値(緑)を呈している.また,目標腐食率 30%シリーズでは NO.9, 10, 11, 21, 34の5ケースで EXMu を約 1~7割の範囲で上まわる危険側の値(赤)を示す結果となった.

(3) 破壊推定値 $_{DM_u}$ と非破壊推定値 $_{N1}M_{u}$, $_{N2}M_u$ の評価 以上の検討から,目標腐食率 3%,10%のシリーズに おいては,破壊推定値 $_{DM_u}$ と非破壊推定値 $_{N1}M_{u}$, $_{N2}M_{u}$ はすべて実測値 $_{EX}M_{u}$ よりも安全側の評価となることが 確認された.ただし,目標腐食率 30%シリーズにおいて は非破壊検査の局所的劣化を推定する精度が不十分で あるために,曲げ耐力の推定値 $_{N1}M_{u}$, $_{N2}M_{u}$ は破壊試験 による推定値 $_{DM_u}$ より危険側となるケースが多くなっ た.

これらの結果から,劣化供試体の等曲げ区間における 破壊検査(はつり出し)および非破壊検査(超音波伝播 速度・腐食ひび割れ幅)の結果を用いて算出した残存曲 げ耐力推定値は、腐食率10%程度までは充分安全側に定 量評価可能であることが確かめられた.

7 結 論

本研究では、鉄筋腐食を生じた RC 梁部材の残存曲げ 耐力実測値と破壊検査および各種非破壊検査結果から 算定した残存曲げ耐力推定値を比較検証することで、残 存曲げ耐力推定法の妥当性を検討した.これにより得ら れた知見を以下に示す.

- (1) 断面諸元(かぶり・鉄筋径)の変化に関わらず,超 音波伝播速度比および腐食ひび割れ幅と,鉄筋径比 に相関関係があることを確認した.
- (2) 断面諸元の変化に関わらず、実測腐食率が大きな供 試体では、劣化鉄筋に分布する局部的劣化の程度お よび箇所が増加することを確認した.
- (3) 断面諸元の変化に関わらず、実測腐食率が大きな供 試体では、鉄筋破断を伴う脆性的破壊へ移行すると ともに、局部的劣化の進行により腐食率以上の低下 率で耐力低下がみられた。
- (4)本研究では、断面諸元の変化に関わらず目標腐食率 10%までの全劣化供試体において、等曲げ区間における非破壊検査結果(最小鉄筋径データ)を基に示方 書式から算出した曲げ耐力は、実測値と比較して充 分安全側に評価可能であった。

謝 辞

本実験の実施に際しては、土木学会コンクリート委員 会「材料劣化が生じたコンクリート構造物の構造性能小 委員会」(委員長:下村匠 長岡技術科学大学准教授) の委員諸氏に多大なご協力,ご尽力をいただきました. ここに記して謝意を表します.

参考文献

- 西川和廣:道路橋の寿命と維持管理,土木学会論文 集,No.501/I-29, pp.1-10, 1994
- 大屋戸理明,佐藤勉:鉄筋が腐食したコンクリート 部材の曲げ耐力の評価,鉄道総研報告, Vol.19, No.12, pp.21-26, 2005
- 3) 魚本健人,加藤佳孝,非破壊検査研究会:コンクリ ート構造物の検査・診断ー非破壊検査ガイドブック, 理工図書出版,2003.8
- 村上将也、山本佳士、黒田一郎、古屋信明:鉄筋腐 食させた RC 梁の残存曲げ耐力特性に関する実験的 研究、コンクリート工学年次論文集, Vol.30, No.1, pp.1095-1100, 2008
- 5) 土木学会:コンクリート標準示方書[設計編], pp.128-130, 2007
- 6) 田森清美ほか:鉄筋の発錆によるコンクリートのひびわれ性状に関する基礎研究、コンクリート工学年次論文報告集, Vol.10, No.2, pp.505-510, 1988
- 7) 日本コンクリート工学協会:超音波パルス伝播時間の標準測定方法(試案),JCI 規準集,pp.269-276, 2004.4
- 8) 日本コンクリート工学協会:コンクリート中の鋼材 の腐食評価方法,JCI 規準集,pp.91-92,2004.4
- 9) 大屋戸理明,金久保利之,山本泰彦,飯島亨:実構 造物の調査結果に基づく腐食鉄筋の力学性状の評価, 土木学会論文集(E), Vol.63, No.1, pp.143-155, 2007.3 (2008 年 9 月 18 日受付)