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This paper proposes a practical method for input-output vibration-based health 
monitoring. The method using degree of nonlinearity (DON), which overcomes the 
limitation of linear models, is proposed. Derived from the Hilbert transform of the 
frequency response function, the DON can measure how much the nonlinearity is 
present in the vibration response. The results in this paper show that the DON of a 
structure has a specific relationship with the magnitude of the excitation. When 
computed from the structure that is still healthy, this relationship can be used as a 
baseline for the health monitoring. If the structure is not healthy, the new computed 
DON will deviate from this baseline. 
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1. INTRODUCTION 
 

During the service life of large civil structures, the 
safety and the serviceability must be ensured. These 
terms may be regarded as the health of the structures. The 
health may change gradually by a time-dependent cause 
such as fatigue, or change abruptly by an extreme event 
such as strong winds and earthquake. Recently, structural 
health monitoring (SHM) plays an important role in 
detecting those changes and assessing the health of large 
civil structures1).  

Among various kinds of SHM, the vibration-based 
health monitoring seems the most popular. This kind of 
monitoring may monitor only ambient vibration response 
(output-only monitoring) or monitor both vibration 
response and excitation (input-output monitoring)2). Until 
now, linear system identifications have been the 
backbone of the vibration-based health monitoring. From 
the monitored vibration response, the system parameters 
governing the behaviour of the structure were estimated 
by a linear model, such as linear state-space model3,4), 
linear frequency response function5), linear statistical 
time-series model 6), or well-known modal model7). A 
change in these estimated parameters are expected to 
indicate the change in the health or the damage of the 
structure.  

For large civil structures, however, the above 
approach is still questionable. This is because the actual 
complicated vibration behaviour is fitted and described 
by a simplified linear model. In fact, the purpose of the 
health monitoring is to monitor the structure as it behaves, 
and there is no reason to assume that the structure is 
linear except for the sake of simplicity; moreover, it is 
widely recognized that damage of structures relates 
somehow to nonlinear behaviours. For these reasons, 

taking account of the nonlinearity should be 
advantageous to the vibration-based health monitoring. 

Although many nonlinear system identifications are 
available8), they are too complicated for practical 
purposes. A practical method that takes account of the 
nonlinearity and meanwhile identifies the change in the 
health of structures is then desirable. This method might 
provide useful information for the vibration-based health 
monitoring. 

This paper is an attempt to propose such a method, 
which measures the nonlinearity directly from the 
monitored vibration response, and exploits the 
nonlinearity for detecting the change in the health of 
structures. Because the monitored data of a real cable-
stayed bridge during earthquakes—i.e. vibration response 
and ground motion—are available, this paper focuses on 
the input-output monitoring for detecting the abrupt 
change in the health caused particularly by the 
earthquakes. Numerically simulated data and real 
monitored data are used to test the proposed method. 
 
2. PROPOSED METHOD 
 

This method is for the vibration-based health 
monitoring of a structure during earthquakes for which 
the excitation (ground motion) and the vibration response 
of the structure are monitored. The method can be applied 
for monitoring data during strong winds with similar 
manner where the excitation will be wind speed records. 
Since strong-wind condition data is obtained often more 
than earthquake data, it may be easier to be an index for 
the judgement. 

Assume that the past monitored data were from the 
healthy condition, whereas the new monitored data is 
from an unknown—healthy or unhealthy—condition, 
which is to be detected. The key step is to measure how 
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much the nonlinearity is present in the vibration response. 
In this paper, this quantity is derived and defined by 
degree of nonlinearity (DON). Theoretically, the value of 
DON should depend on several factors: the characteristics 
of the excitation (type and magnitude) as well as the 
characteristics of the nonlinearity (type and severity)9). 
Therefore, the relationship between the DON and these 
relevant factors should provide information about the 
nonlinear behaviour for different circumstances. In other 
words, this relationship can be considered as the 
signature of the structure. 

If the past monitored data are analyzed, a healthy 
signature should be available as a baseline for 
comparison. If a DON from the new monitored data, 
during a new striking earthquake, is (statistically) higher 
than the values in the baseline, the structure will be 
susceptible to the change caused by that earthquake.  

It is important to note that the proposed method 
assumes that the change in the vibration behaviour—from 
linear to nonlinear, or from nonlinear to highly 
nonlinear—indicates anomalies in the structure. The 
phrase “the change in the health” in this paper, therefore, 
does not mean concretely how the safety or the 
serviceability has changed or what kind of damage has 
occurred. The extension of the method to the damage 
identification is beyond the current scope of this paper. 
At this moment, the proposed method gives only the 
information that the anomalies have occurred, which is 
enough for some practical purposes.  
 
2.1 Theoretical Background 

The degree of nonlinearity (DON) is calculated by the 
Hilbert transform of the frequency response function 
(FRF). This section presents a brief theoretical 
background and the derivation of the DON proposed by 
the authors. 
(1) Frequency response function (FRF) 

If the time histories of the excitation and the vibration 
response are measured, whether the structure is linear or 
nonlinear, the frequency response function (FRF), which 
is denoted by ( )H ω , can be estimated by  
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where Y is the Fourier transform of the vibration 
response; U is the Fourier transform of the excitation; * 
denotes the complex conjugate operator; and ω  is the 
frequency variable. 
(2) Hilbert transform of FRF 

The Hilbert transform of a FRF is defined by a 
convolution integral 
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For a linear structure, it has been proved that the real 
part and the imaginary part of the FRF in Eq.(1) are 
dependent on each other10); that is, the real part can be 
computed from the imaginary part, and vice versa. 

Therefore, the FRF measured from the linear structure will 
be invariant under the Hilbert transform8-10): 

 ( ) ( )H Hω ω=%
 (3) 

If Eq.(3) is not valid, the structure is nonlinear; in other 
words, the FRF is different from its Hilbert transform:  

 ( ) ( )H Hω ω≠%
 (4) 

The difference between both sides in Eq.(4) are the 
results of the nonlinearity. The numerical value of the 
difference indicates how much the nonlinearity is present 
in the vibration. The computation of the Hilbert transform 
in Eq.(2) is not tedious since it is a convolution integral, 
and the required information is only the FRF. Without 
nonlinear system identifications or prior knowledge of 
structural parameters, the nonlinearity is conveniently 
computed by Eq.(2), which is used to derive the DON, the 
parameter proposed in this paper. 
(3) Degree of nonlinearity (DON) 

The difference or the nonlinearity in Eq.(4), as 
mentioned, depends on several factors: the characteristics 
of the excitation (type and magnitude) as well as the 
characteristics of the nonlinearity (type and severity). The 
difficulty is that this difference depends on factors that 
are unknown or unmeasurable; thus, it will be convenient 
if those factors could be simplified somehow. For large 
civil structures, the type of the nonlinearity is 
mathematically indescribable; however, it should exist in 
a frequency-dependent function. The type of the 
excitation, which is from far-field or near-field 
earthquakes, may be written in a frequency-dependent 
function as well. For these reasons, the difference in 
Eq.(4), which itself is also a frequency-dependent 
function, can be approximated by 

 ( ) ( ) ( ) ( )H H Hω ω δ ω ω− ≈%  (5) 
where an unknown frequency-dependent complex 
function ( )δ ω , multiplied by the known function ( )H ω , 
is expected to represent all frequency-dependent 
characteristics of the type of the nonlinearity and 
excitation. If the modulus of each side in Eq.(5) is 
integrated over the interesting frequency range 1 2[ , ]ω ω , 
then  
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According to the mean value theorem, there exists a mean 
valueδ of the unknown function ( )δ ω  such that  
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The mean value δ is the degree of nonlinearity (DON), 
which measures the nonlinearity in the vibration response 
and simplifies the other relevant factors by the mean 
value theorem. Because of this mathematical 
simplification, the DON becomes dependent on only one 
factor, the magnitude of the excitation. In other words, 

 [ ]rmsF uδδ =  (8) 
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Fig.1 Possible cases of changes in the health of structures 

 
where urms is the root mean square average of the 
magnitude of the excitation (such as ground acceleration 
or wind speed), and Fδ is the relationship between the 
DON and the ground acceleration or wind speed. This 
equation represents the signature of the structure. 

Note that even if the structure is perfectly linear, the 
value of the DON may not be exactly zero due to other 
factors than the nonlinearity such as noise, bias in 
computation of the FRF, etc. These are difficult to identify 
practically, but they may not be serious since we need the 
pattern of the DON with the amplitude of the excitation 
rather than the exact numerical value of the DON. 
 
2.2 Procedure for Health Monitoring 

To better understand the proposed method, the 
procedure for the vibration-based health monitoring is 
summarized as follows: 
(1) Construct the healthy baseline 

1. From a past monitored data when the structure 
was still healthy, compute the FRF by Eq.(1). 

2. From the FRF, calculate the Hilbert transform 
by Eq.(2). 

3. From the Hilbert transform the FRF, extract the 
DON by Eq.(7). 

4. From the ground motion, calculate the 
magnitude urms.  

5. Plot the DON versus urms. 
6. Repeat step 1 to 5 for all data until the 

relationship in Eq.(8) is observed. This is the 
baseline signature for comparison, as shown by 
solid lines in Fig.1. 

(2) Detect the change in the health 
1. From a new monitored data, compute and plot 

the new DON versus urms. 
2. If the new DON is higher than the values in the 

baseline, as shown by cross symbols in Fig.1, 
the health of structure may be changed by the 
new striking earthquake. 

The test of the method and detailed explanation of 
Fig.1 are in the next section.  
 
 
 

3. TEST OF THE METHOD 
 

The objective of this section is to investigate whether 
the DON is useful for the health monitoring. That is to 
show the following statements: 1) the DON can measure 
the nonlinearity; 2) the DON of a structure has a specific 
relationship with urms; 3) the signature can be used to 
detect the change in the health. Two kinds of data—
numerically simulated data from nonlinear systems and 
monitored data from a real bridge—are used in this test. 
 
3.1 Simulated Data from Nonlinear System 

In mathematics, there are many types of nonlinearity 
that can be simulated, but for large civil structures, the 
characteristics of nonlinearity may be unknown and then 
may not be simulated realistically. This difficulty, 
however, is not a problem since the DON just measures 
whatever nonlinearity. Therefore, the simulation here is 
to show whether or not the DON can detect simple 
nonlinearities, not to simulate the realistic nonlinear 
behaviour. If the DON can detect these simple 
nonlinearities, it should do the same for more realistic 
nonlinearity. 
(1) Nonlinear system 

Consider a simple nonlinear system described by 
 ( ) ( )smy cy f y u t+ + =&& &  (9) 
where y is the response; u is the uniform random noise 
excitation with the rms urms; the system parameters are m 
= 1, c = 0.10, and k = 25.27. fs(y) is a nonlinear term in 
which two types of nonlinearities are to be simulated: the 
saturation nonlinearity and the cubic nonlinearity. The 
saturation nonlinearity is governed by a condition: 

( )s max maxf y f ky f= − ≤ ≤ where the nonlinear parameter 
fmax = 6.208 (for low nonlinearity) and fmax = 4.319 (for 
high nonlinearity). In this case, the system is linear when 
the response is small but becomes nonlinear when the 
response is large enough so that fs(y) becomes saturated.  

On the other hand, the cubic nonlinearity is governed 
by a condition: 3( )sf y ky yα= + where the nonlinear 
parameter 2.527α = (for low nonlinearity) and 

12.64α = (for high nonlinearity). In this case, the system 
is always nonlinear.  
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Fig.2 DON versus magnitude of excitation (simulated data) 

 
Fig.3 Cable-stayed bridge monitored during earthquakes 

 
The simulation has been performed in both cases by 

varying the magnitude of the excitation from a small to a 
large value. The corresponding DON for each magnitude 
of the excitation are computed and plotted in Fig.2 
(2) Results and discussions 
Fig.2 consists of two parts; the left side is from the 
saturation nonlinearity, whereas the right side is from the 
cubic nonlinearity. The upper part is from the result when 
the level of the nonlinearity is low, whereas the lower 
part is from the result when the level of the nonlinearity is 
high  

From the saturation nonlinearity in Fig.2(a), when the 
magnitude of the excitation is small, the DON is constant 
over that range of the excitation; this is because the 
system is still linear. However, when the magnitude of 
the excitation exceeds a certain level at which the system 
becomes nonlinear, the DON increases. The same 
tendency can be observed in Fig.2(b). From the cubic 
nonlinearity in Fig.2(c)-(d), the DON always increases 
with the amplitude of the excitation; this is because the 
system is always nonlinear. To conclude, these results are 
the evidence that the DON can measure the nonlinearity. 

-812-



 
 

Now consider the characteristics of the nonlinearity: 
the type and the severity. It is obvious that each type of 
the nonlinearity produces its own curve. In addition, the 
severity of the nonlinearity has an obvious effect on the 
rate of increase in the DON. Therefore, for a structure 
which has certain characteristics of the nonlinearity, the 
DON versus urms is the signature of that structure. 

The discussion so far has been on the simulated data. 
To better confirm the validity of the DON, monitored data 
from a cable-stayed bridge are discussed in the next 
section. 
 
3.2 Monitored Data from a Bridge 
(1) Bridge monitored during earthquakes 

The data used in this section are from a healthy cable-
stayed bridge that was monitored during earthquakes, as 
conceptually shown in Fig.3. The vibration responses are 
measured in three main directions: X-longitudinal, Y-
transversal, and Z-vertical direction. The monitored data 
from five earthquakes, abbreviated by EQ1 to EQ5, are 
used. The average values of the DON from all the sensors 
are computed and plotted versus the magnitude of the 
ground motion, as shown in Fig.4. These plots can be 
considered the baseline for the health of the bridge, 
constructed from five records. 
(2) Results and discussions 

From Fig.4, the DONs in all plots are almost constant 
over the range of the magnitude of ground motion (except 
for EQ5 in Y-direction). This constant tendency is similar 
to Fig.2(a)-(b) when the magnitude of the excitation is 
not large enough to induce highly nonlinear behaviour. 
Thus, Fig.4 implies that the nonlinearity may not play an 
important role in the vibration behaviour of this bridge.  

Now consider the DON of EQ5 in Y-direction, which 
deviates clearly from its neighbours. In fact, EQ5 has the 
largest magnitude among the monitored data, and the 
measured vibration response in Y-direction was highly 
contaminated by spikes and noise. It is not easy to 
identify what was the source of this outlier; however, no 
matter what it was, the DON could indicate a situation that 
was unusual. Although the damage scenario of this bridge 
is required to conclude more about the change in the 
health, it is not in the current scope of this paper. At this 
moment, the DON seems useful for the health monitoring, 
and Fig.4 may be the good baseline for the health 
monitoring. 
 
3.3 DON in Vibration-based Health Monitoring 

From the previous results, advantages of using DON 
have been confirmed. Let consider in details how the 
signature or the baseline can detect the change in the 
health of a structure. Consider Fig.1 again, where two 
possible cases of changes in the health are illustrated. In 
CASE 1 the baseline has included the range of behaviour 
from linear to nonlinear. If the new DON is statistically 
higher than the values in the baseline, the structure may 
behave more nonlinearly or the characteristics of the 
nonlinearity have been changed. In CASE 2, the baseline 
has included only the linear range. If the new DON is 
statistically higher than the values in the baseline in the 
linear range, the structure may behave more nonlinearly. 
If the magnitude of the excitation is beyond the range that 

the structure has ever endured, the higher DON may 
indicate the higher nonlinearity. In both cases, however, 
an assumption has to be imposed: the change in the 
vibration behaviour implies some anomalies in the 
structure. This is how the signature can be used to detect 
the change in the health of the structure. 

When this method is applied to practical situations, 
judgement criteria of DON should be investigated with 
wide-range and long-time data. The comparison of DON 
among different locations will also be useful for that 
purpose. 
 

 
 

Fig.4 DON versus magnitude of ground motions 
(monitored data) 
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4. CONCLUSIONS 
 

This paper proposes and verifies a method for 
vibration-based health monitoring. The points can be 
summarized as follows: 
• The paper focuses on the input-output vibration-

based health monitoring, i.e. the monitoring of the 
vibration during earthquakes.  

• The degree of nonlinearity (DON), which is an idea to 
overcome the limitation of linear models and the 
difficulty of nonlinear system identifications, is 
proposed. 

• The DON measures whatever nonlinearities into a 
single number. The computation of the DON requires 
only the frequency response function (FRF), thus it is 
convenient to use in practice. 

• From the simulated data, the DON can measure the 
nonlinearity in the vibration response and can 
capture the nonlinear behaviour that varies with the 
magnitude of the excitation. 

• For a structure, the DON has a specific relationship 
with the magnitude of the excitation. This is 
considered as the signature of the structure, as 
confirmed by the measured data of a bridge.  

• The signature when the structure is still healthy can 
be the healthy baseline of the structure. The new DON 
that is statistically higher than the values in the 
baseline indicates the change in the health of the 
structure. 

• The DON should be accumulated on existing bridges 
for various conditions. The judgement criteria of 
DON should be established. 
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