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In this paper, time-domain modeling of bridge deck flutter is first developed. The frequency 
dependent self-excited forces acting on a bridge deck are approximated in the Laplace 
transform domain by rational functions. The least-square matrix formulation of the rational 
function approximation is applied to flutter derivatives of the Akashi Kaikyo Bridge and 
airfoil. Besides, numerical analyses of the wind-induced response of the Akashi Kaikyo 
Bridge were conducted to facilitate the discussion. After that, the vertical deflection and 
torsion at the span center of the Akashi Kaikyo Bridge caused by buffeting and self-excited 
forces using the results of approximated flutter derivatives are examined to investigate the 
sensitivity of the approximation to the wind-induced response. 
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1.  Introduction 
 

Long-span cable supported bridges are inherently lightly damped 
and flexible. Therefore, these bridges are susceptible to wind 
induced instabilities. Flutter and galloping are destructive 
phenomena and need special attention. Safety against flutter may be 
ensured by keeping the critical wind speed well above the design 
wind speed at the bridge site.  

Self-excited forces causing flutter are in general dependent on the 
geometric profile of the bridge deck section, angle of wind attack 
and wind velocity expressed as reduced frequency. Scanlan1) 
expressed self-excited lift, drag and pitching moment in terms of 
flutter derivatives and associated structural motions. The analytical 
approach adopted by Scanlan1), Scanlan and Jones2), Jain et al3) is 
predominantly in frequency domain. However, the frequency 
domain approach is restricted to linear structures excited by 
stationary winds without aerodynamic nonlinearities such as the 
sudden change of mean wind speed and transient response at near 
the flutter critical wind speed. Recently, an analytical procedure in 
time domain has been proposed by Boonyapinyo et al4) and Chen et 
al5) by the introduction of rational function approximation of 
self-excited forces. 

In the past, frequency domain analysis dominated due to the 
efficiency of computation, especially when handling the unsteady 

aeroelastic forces that are functions of reduced frequency. The nature 
of flutter analysis is generally a complex eigenvalue problem. With 
increasing the length of bridge span, the structure becomes more 
flexible. It’s necessary to transform the analytical method from 
frequency domain into time domain to overcome the difficulties in 
dealing with those nonlinearities. 

Recently, an efficient scheme for a coupled multimode flutter 
analysis has been proposed introducing the unsteady self-exited 
aerodynamic forces in terms of the rational function 
approximations4), 5). This has led to a convenient transformation of 
the equation into a state space format independent of reduced 
frequency. A significant feature of this approach is that an iterative 
solution for determining flutter boundary is unnecessary because the 
equations are independent of the reduced frequency K = ωB /U 
where ω is the circular frequency, B is the deck width and U is the 
wind velocity. To include those nonlinearities of structural and 
aerodynamic origins, the time domain approach is more appropriate. 
Time domain approach, however, involves the transformation of 
flutter derivatives into indicial functions, which have inherent deficit. 
The effectiveness of the time domain analysis in calculating 
buffeting response depends on the establishment of an effective time 
domain model for the self-excited wind force. However, few studies 
on accuracy of the approximation were made. 

In this study, sensitivity of approximation accuracy in the rational 
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function approximation for self-excited forces is investigated with 
respect to the approximation error and wind-induced response with 
the approximation result. Some guidelines for wind-induced 
response analysis in time domain with the rational function 
approximation method will be clarified. 
 
2.  Equation of Motion of Bridge Deck 

 
A basic task in the study of the bridge aeroelasticity is to 

formulate the wind forces on the structure. Considering a section of 
bridge deck subjected to the action of a smooth oncoming flow, the 
section is assumed to have two degrees of freedom: heaving 
displacement h and rotation α as shown in Fig. 1. A unit sectional 
model has mass m, polar moment of inertia I, coefficient of viscous 
damping Ch and Cα , and vertical and stiffness coefficients of the 
heaving and pitching modes Kh and Kα . With these definitions, the 
equations of motion of a bridge deck can be written as follows: 

 LhKhChm hh =++ &&&  (1a) 

 MKCI =++ ααα αα &&&  (1b) 

where L and M are the lift and pitching moment about the rotation 
axis per unit span length, respectively. The lift and pitching moment 
per unit span can be defined by: 

Lift:   bae LLL +=  (2a) 

Pitching moment:  bae MMM +=  (2b) 

where the subscripts ae and b refer to aeroelastic and buffeting, 
respectively. 
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Fig.1 Two degrees of freedom model of bridge deck 

 
Special considerations are needed for the formulation of 

self-excited forces for a bridge deck. The signature turbulence, in the 
case of an efficient airfoil in a smooth flow, is intentionally reduced 
by careful streamlining with notable attention to the introduction of a 
sharp trailing edge. For bluff bodies, however, the situation is 
different. The use of Theodorsen aerodynamics for such bluff bodies 
is not guaranteed correct. In view of this, the formulation of 
self-exited forces on civil engineering structures, such as a bridge 
deck, is more experimental than theoretical. Scanlan1) suggested the 
reduced frequency dependent flutter derivatives could be used in the 
modeling of self-excited forces on a bridge deck. This is the 

counterpart of the Theodorsen theory in the experimental bridge 
aerodynamics. The flutter derivative format representation of 
self-excited forces takes the form for two degrees of freedom:  
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where ρ is the air density; U is the mean wind velocity; B is the 
width of the section model; UBK /ω=  is the reduced 
frequency, ω is the circular frequency of oscillation; and the 
non-dimensional aerodynamic coefficient ∗

iH  and ∗
iA  (i = 1, 2, 

3, 4) are the flutter derivatives of a cross section as a function of the 
reduced frequency. 

Under assumed relatively slowly varying gust action, the 
buffeting forces are defined as: 
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where CL and CM are the static lift and pitching moment coefficients 
(referred to deck width B) of a typical deck station, respectively; 

αddCC LL /' =  and αddCC MM /' = ; and  u = u(t) and w 
= w(t) are the along-wind and vertical velocity fluctuations of the 
wind, respectively. 
  
3.  Rational Function Approximation of Aeroelastic Forces   

 
To analyze aeroelastic forces, frequency-dependent aeroelastic 

forces are often transformed into time-dependent forces so that they 
can be applied in the explicit time-domain approach. The most 
common form of the approximation function for aeroelastic force 
coefficients is a rational function of the non-dimensional Laplace 
variable p (non-dimensional Laplace variable, iKUsBp == / , 
where non-dimensional time BUts /=  and unit imaginary 
number 1−=i ). For the two degrees of freedom section model, 
the equations of motion, considering aeroelastic forces only, can be 
written in the Laplace transform domain (L denotes the Laplace 
operator) with zero initial condition as: 
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Coefficient matrices in equation (5) are defines as: 
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Each component of matrix Q
~  in equation (5) is complex number 

including two parts: real part ( ∗
in XK 2 , ∗∗∗∗∗ = 3434 ,,, AAHHX i ) 

and imaginary part ( ∗
jn XK 2 , ∗∗∗∗∗ = 2121 ,,, AAHHX j ). Kn is the 

n-th reduced frequency in measurement. 
Thus, aeroelastic lift and pitching moment per unit span length of 

the section model expressed in the Laplace transform domain can be 
written as follows: 
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  (6) 

where ‘̂ ’ denotes the transformation in the Laplace domain. 
Approximation of the aeroelastic forces as the rational function of 

a Laplace variable allows the equations of motion to be written in a 
linear time invariant state-space realization. There are several 
variations of the matrix form of the rational function approximation 
for unsteady aeroelastic force coefficients. Two major variations are 
the least-squares formulation and minimum state formulation. Each 
matrix formulation results in a different aerodynamic state vector. In 
this study, the least-square method was used to approximate the 
aeroelastic forces. 

Roger7) formulated the rational function approximation using the 
least-square method as follows: 
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Each matrix in equation (7) is a square matrix, with the dimension n 
× n (n is number of degrees of freedom of the section model). The 
element of A0, A1 represent aerodynamic stiffness and damping, 
respectively. The partial fractions, )/(A 1 ll iK λ++ , are 
commonly called “lag terms” as each represents a transfer function 
in which output “lag” behind the input and approximates the 
inherent time delays associated with unsteady aerodynamic forces. 
The coefficients of the partial fractions lλ  are referred as “lag 
coefficients”. Because the 3rd clause of equation (7) has the shape of 
the rational function, this approximation method is called a rational 
function approximation technique. 

To minimize the error of approximation process, we can increase 

the number of lag terms. However, this action also means we have 
to increase the number of required equations to define the 
aerodynamic system. Improvement can also be realized by 
decreasing the frequency range over which the fits are required, but 
this narrows the applicability of the approximation. The additional 
improvements may be obtained by an optimization of the lag 
coefficients. 
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where the reduced frequency K is defined as 
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From equation (9), it is easily seen that the coefficients (A0)ij, (A1)ij, 
and (Al+1)ij may be found through a linear optimization but the lag 
coefficients must be found by using a nonlinear optimization method. 
Determination of parameters of approximation functions is divided 
into two parts: optimization of coefficients (Am)ij (i, j = 1, …, n;  m 
= 0, …, nl + 1) and search for lλ .  

To define the linear parameters in the rational function 
approximation, the error function between the approximate data and 
the actual tabular data for each aerodynamic force element is defined 
as follows: 
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where ijQ̂  and Qij are the approximation and tabular value of 
matrix Q, respectively; Re(Qij(iKn) and Im(Qij(iKn) are the real part 
and imaginary part of Q, respectively; {Kn} is a set of reduced 
frequencies for which tabular data are available, and 
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To evaluate the error margin of each element of Q(iKn) as evenly 
as possible, the second part of the error margin is added with Mij of 
expression (11). Each term in the sum in equation (11) is a measure 
of relative error if the maximum magnitude of Qij(iKn) is larger than 
1, but it becomes an absolute error for magnitudes smaller than 1. 
This error function essentially normalizes the aerodynamic data prior 
to the nonlinear optimization. 

To minimize the value of εij when considering the function of 
Anl+1, (Am)ij should fill the following relation. 
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To determine the nonlinear parameters in the rational function 
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approximation, the nongradient method was developed6). In this 
application, the nongradient optimizer was also confirmed to be 
numerically stable and to possess good convergence properties. The 
evaluation function J will be used to reduce the total approximation 

errors, ∑∑
= =

=
2

1

2

1i j
ijijwJ ε . The weighting factors wij are used to 

force some of the elements to have more priority than others in 
determining the lag coefficients. 

The process of approximation for both linear and nonlinear is 
shown in Fig. 2 in which the value Aij and λij can be defined so as to 
minimize the value of the evaluation function J. After that, the 
approximation results of Qij are obtained. 
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Fig. 2 Flow chart of rational function approximation process 

 
 
4.  Application of Rational Function Approximation    

 
In this study, both Theodorsen theory and Akashi Kaikyo Bridge 

data were used to compare the results between approximation and 
tabular data. 
4.1 Theodorsen Theory 

In Theodorsen theory, when the oscillation is sinusoidal, the 
flutter derivatives for a bridge deck can be defined as follows1): 

 KFHK π21
2 −=∗  (13a) 

 ⎥⎦
⎤

⎢⎣
⎡ ++

−
=∗ F

K
GKHK 41

22
2 π

 (13b) 

 ⎥⎦
⎤

⎢⎣
⎡ −−=∗

2
23

2 GKFHK π  (13c)

 ⎥⎦
⎤

⎢⎣
⎡ +=∗

K
GKHK 41

2
2

4
2 π

 (13d) 

 KFAK
21

2 π
=∗  (13e) 

 ⎥⎦
⎤

⎢⎣
⎡ −−

−
=∗

4422
2 KFGKAK π

 (13f) 

 ⎥⎦
⎤

⎢⎣
⎡ −−

−
=∗

4422
2 KFGKAK π

 (13g) 

 
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
−+=∗

4322

2

3
2 KGFKAK π  (13h) 

 KGAK
24

2 π−
=∗  (13i) 

where the functions F and G are the real and imaginary part of 
Theodorsen’s circulation function. 

Fig. 3 shows the approximation results ijQ̂  of Theodorsen 
flutter derivatives with 2 and 3 lag terms in case the weight factor 

1=ijw  is used. For Theodorsen theory, the approximation results 
are not so different in case more than 3 lag terms are used. The total 
errors for Theodorsen theory with more lag terms will be presented 
later in Fig. 5. 
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Fig. 3 Approximation results using 2 and 3 lag terms for Theodorsen 
theory 
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Fig. 3 Approximation results using 2 and 3 lag terms for Theodorsen theory (cont.) 

 
 
4.2 Akashi Kaikyo Bridge 

In this part, the results of the Akashi Kaikyo Bridge wind tunnel 
test with two cross sections (original section and modified section) 
will be used to analyze by using the rational function approximation 
technique. With each section, the tabular data for other angles of 
attack are also considered to compare the approximate results. The 
obtained results for the original section with 0 degree of angle of 
attack (αa) are shown in Fig. 4. For the Akashi Kaikyo Bridge, the 
approximated result of component Q22 in most cases is not so good 

although 6 or 7 lag terms were used. However, the approximation 
results are almost same after 5 terms. 

Fig. 5 shows the total errors between approximate result and 
Theodorsen theory or tabular data of the Akashi Kaikyo Bridge in 
other cases, using the weighting factor wij = 1. For most cases, the 
total error will decrease very fast from 2 lag terms to 4 lag terms, and 
after 5 lag terms the total error is almost constant. The slow decrease 
of the total error in the modified cross section of -3 degree may be 
due to point deviation of measurement value of a flutter derivative. 
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Fig. 4 Approximation results using 2, 4 and 6 lag terms for original section, αa  = 0 degree 
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Fig. 5 Total error between approximation result and experiment result 
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5.  Structure’s Response Analysis 
 

For the Akashi Kaikyo Bridge, the power spectral densities of 
along-wind and vertical velocity fluctuations of the wind were 
modeled using the Hino spectrum and Busch & Panofsky spectrum, 
respectively, based on the measurements in the wind tunnel. 
Turbulence intensities Iu = 0.1, Iw = 0.05 for turbulent components 
u(t) and w(t), respectively, are used to generate wind speed. Fig. 6 
shows an example time history of along-wind and vertical velocity 
fluctuation of the wind speed of 60 m/s. 
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a) Along-wind velocity fluctuation 
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b) Vertical component of wind fluctuation 

Fig. 6 Time history of wind speed fluctuation (U = 60 m/s) 
 
In this study, the response at the span center of the Akashi 

Kaikyo Bridge, during 600 seconds, was analyzed at a set of mean 
wind velocity from 20 m/s to 110 m/s in two cases: first case is 
buffeting force only applied and second case is both buffeting and 
self-excited forces applied. The analysis was done with fundamental 
two modes: 1st symmetric vertical mode (f1 = 0.065Hz) and 1st 
symmetric torsional mode (f2 = 0.15Hz). Other structural and 
aerostatic parameters are m = 44.0 × 103 kg, I = 1.0 × 107 kgm2, ζh = 
0.03/2π, ζα = 0.02/2π, CL = 0.1, CL’ = 1.9, CM = 0.01 and CM’ = 0.27. 

In the case of both buffeting and self-excited forces applied, the 
equation of motion of two degrees of freedom bridge deck model 
can be approximately expressed as8) 

 befef QXKXCXM =++ &&&             (14) 
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m is mass; I is polar moment of inertia of bridge deck; B = 2b is 
bridge deck width; ωh, ωα  are natural circular frequencies in the 
vertical and torsional direction, respectively; hξ , αξ  are damping 
ratios in the vertical and torsional direction; Ubk /11 ω= , 

Ubk /22 ω=  are reduced frequencies corresponding to the two 
modes; ∗

iH  and ∗
iA  (i = 1, 2, 3, 4) are flutter derivatives, which 

are functions of reduced frequency and approximated by the rational 
function approximation; Cef , Kef are effective aeroelastic stiffness 
and damping matrices. 

By solving the equation of motion, the Newmark β method with 
2.0=Δt  (s) was used and the response at the span center of the 

Akashi Kaikyo Bridge was obtained. 
 
5.1 Theodorsen Theory 

The response of the Akashi Kaikyo Bridge using the theoretical 
flutter derivatives was first analyzed. Figs. 7 and 8 show the vertical 
deflection and torsion at span center of the original section at wind 
speeds of 30 m/s and 40 m/s. With Theordorsen theory, at 30 m/s, 
there is no apparent divergence trend. However, the divergence 
phenomenon is going to occur at 40 m/s (Fig. 8b). Besides, the 
structure response, both vertical deflection and torsion, is not 
different between 2 lag terms and 3 lag terms. It can be said that the 
response is insensitive to the approximation error as shown in Fig. 3. 
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a) Vertical displacement, with 2and 3 lag terms 
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b) Torsion with 2 and 3 lag terms 

 
Fig. 7 Responses of original section of Akashi Kaikyo Bridge with 
Theodorsen theory by buffeting and self-excited forces (U = 30 m/s) 
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a) Vertical displacement with 2 and 3 lag terms 
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b) Torsion with 2 and 3 lag terms 

 
Fig. 8 Responses of original section of Akashi Kaikyo Bridge with 
Theodorsen theory by buffeting and self-excited forces (U = 40 m/s) 
 
5.2 Akashi Kaikyo (Original section, αa  = 0 degree) 

For the Akashi Kaikyo Bridge, vertical deflection and torsion at 
60 m/s with buffeting forces only applied is presented in Fig. 9. 
Quite large response in vertical was obtained. On the other hand, in 
the case of both buffeting and self-excited forces applied at 50 m/s, 
vertical response is decreased due to aerodynamic damping and 
torsional response shows a litter sinusoidal excitation due to 
self-excited force, as shown in Fig. 10. At this wind velocity of 50 
m/s, no apparent divergence trend can be observed, but the torsional 
response shows more sinusoidal excitation and is going to diverge 
slowly at 60 m/s as shown in Fig. 11. 

Similar to the result of Theodorsen theory in Section 5.1, 
although the approximate error is very different, the response of the 
bridge is almost same between 2 lag terms and 5 lag terms as shown 
in Figs. 10 and 11. This means the response is insensitive to 
approximate error within the error in this study. However, 
appropriateness of the convergence criteria should also be examined 
more specifically. 
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a) Vertical displacement, αa = 0 degree 
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b) Torsion, αa = 0 degree 

 
Fig. 9 Responses of original section Akashi Kaikyo Bridge with 
buffeting force only (U = 60 m/s) 
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a) Vertical displacement, αa = 0 degree, 2 and 5 lag terms 
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b) Torsion, αa = 0 degree, 2 and 5 lag terms 

 
Fig. 10 Responses of original section of Akashi Kaikyo Bridge with 
buffeting and self-excited forces (U = 50 m/s) 
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a) Vertical displacement, αa = 0 degree, 2 and 5 lag terms 

 
Fig. 11 Responses of original section of Akashi Kaikyo Bridge with 
buffeting and self-excited forces (U = 60 m/s) 
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b) Torsion, αa = 0 degree, 2 and 5 lag terms 

 
Fig. 11 Responses of original section of Akashi Kaikyo Bridge with 
buffeting and self-excited forces (U = 60 m/s) (cont.) 
 
6.  Effect of Evaluation Function 
 

Another important issue in the rational function approximation 
technique is the effect of weighting factor wij. In this part, the 
approximation process with other evaluation functions 

∑ ∑=
= =

2

1

2

1i j
ijijwJ ε , based on changing the weighting factor wij , 

will be carried out to define the effect of function J. Only tabular data 
of original section of 0 degree with 4 lag terms is used to analyze 
with three cases of J as follows: 
Case 1: considering the total error with same factor wij, 

∑ ∑=
= =
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2

1
1

i j
ijJ ε  

Case 2: the factor wij will be selected depending on the magnitude of 
Qij, 

222112112 10010 εεεε +++=J  

Case 3: only considering the minimum error of Q22, 

∑ ∑=
= =

2

1

2

1
223

i j
J ε  

Fig. 12 shows the obtained approximation results in the three 
cases. Although the shape of approximated curve of Q22 in case 2 
and case 3 is better than that in case 1, the total error in case 1 is 
much smaller than other cases as shown in Fig. 13. This is because 
the absolute errors of Q11, Q12 and Q21 are larger and dominant in the 
total error. However, the structure’s responses, both vertical 
deflection and torsion, are almost same in 3 cases as shown in Fig. 
14. As similar to 5.2, the response is insensitive approximation error. 
This must be carefully examined if the approximation error does not 
affect the response or the approximate error at the wind speed 
analyzed happens to be small among the cases compared. That 
demonstrates the weighting factor doesn’t have a significant role in 
wind-induced response with rational function approximation 
technique. 
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Fig. 12 Approximation results for original section, αa = 0 degree, 4 
lag terms in three cases 
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Fig. 13 Total error between approximation result and experiment 
result in three cases 
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Vertical deflection, U60, Ori., 0deg., 4 terms
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a) Vertical displacement 

Torsion, U60, Ori., 0deg., 4 terms

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0 100 200 300 400 500 600
Time (s)

A
ng

le
 (r

ad
.)

Case 1
Case 2
Case 3

 
b) Torsion 

 
Fig. 14 Approximation results of original section, αa = 0 degree, 4 
lag terms in three cases (U = 60 m/s) 
 
7.  Conclusion 
 

Analytical investigations on rational function approximation 
technique for wind-induced response analysis of a long-span bridge 
in time domain were presented using the Akashi Kaikyo Bridge data. 
In particular, the sensitivity of the approximation to the response was 
focused on. Conclusions obtained are summarized as follows: 
[1] Approximation can be succeeded even for real bridge flutter 

derivatives if using larger number of lag terms. The more lag 
terms were used, the smaller total error was obtained. Even in a 
real bridge case, at least 4 lag terms will be enough with respect 
to approximation error. 

[2] Time-domain response analysis by the rational function 
approximation technique can well capture the transient response 

at near the critical wind speed. 
[3] The total approximation error was not significant to the bridge 

response. However, this may be due to the fact that the 
approximation error at the wind speed analyzed happened to be 
small. Or significant difference may arise if the total 
approximation error becomes larger than the range in this study. 
In future, this insignificance should be further examined, e.g., 

using flutter derivatives of other long-span bridges. 
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