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The flow around two cylinders shows more complex phenomena than that for a single cylinder. 
Depending on the arrangement of the cylinders, the responses due to the flow behavior present 
various aspects. In this study, numerical simulations are performed to investigate the flow 
around two circular cylinders of equal diameter in staggered arrangements at a subcritical 
Reynolds number. The center-to-center distance ratio of the cylinders is set to 2 and the angle 
of incidence is varied as 5, 10 and 15 degrees. The incidence-angle dependencies on the flow 
pattern, the aerodynamic forces and the Strouhal number are investigated. In particular, a 
bistable flow pattern is obtained as reported in several experimental studies and its 
characteristics on the flow field and the forces are discussed. 
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1. Introduction  

 
   Industrial and engineering constructions nowadays make use 
of various shape and combinations of shapes, among which 
circular cylinders in staggered arrangement can be named. The 
flow around multiple cylinders presents higher complexity 
phenomena, than for a single cylinder case. In general, for two 
circular cylinders, the shear layer separated from the upstream 
cylinder reattaches onto the downstream cylinder, or interferes 
with the stream formed around this (Fig.1). The shear layer 
interaction also causes a vibration of the cylinders and eventual 
structural damages; detailed examinations and understandings of 
the phenomena are then important. 
   Numerous researches using experiments and computational 
investigations for two circular cylinders in various arrangements 
have been made. For example, Sakamoto et al.1), Sumner et al.2), 

3), Kiya et al.4), Gu and Sun.5) , Zdravkovich6), 7) and Mittal et al.8) 
have revealed considerable complexity depending on the 
center-to-center distance ratio, L / D (L: center-to-center distance 
between the cylinders, D: cylinder section diameter), and the 
incidence angle, α, for the cylinders in staggered arrangement. 
They have classified the flow patterns or have investigated the 
aerodynamic force coefficients and the Strouhal number. 
Zdravkovich7), 9) explored to classify the flow around two 
staggered circular cylinder and mentioned three main 
interference regions : “Proximity Interference”, “Proximity and 
Wake Interference” and “Wake Interference”. As a particular 
case of the last two, “Wake Displacement Regime” and “Gap 

Flow Regime” were also mentioned. Additionally, Gu and Sun5) 
showed that at angles of more than 20° the shear layers from the 
upstream cylinder do not interact with those of the downstream 
cylinder. Based on water channel experiments for flow 
visualization, Sumner et al.2) identified no less than nine flow 
patterns for various center-to-center distances and the incident 
angles. While these previous achievements were obtained 
mainly with experiments, the numerical investigation started to 
be applied for the staggered circular cylinders in recent years. 
For example, Akbari and Price10) numerically investigated the 
flow behavior, such as vortex formation, for two cylinders in 
staggered arrangements (L / D = 1.1 - 3.5, α = 30°- 70°) and at a 
low Reynolds number, Re = 800. Five flow patterns were 
identified, and those are called ‘‘Base-Bleed”, “Shear-Layer 
Reattachment”, “Vortex Pairing and Enveloping”, “Vortex 
Impingement” and “Complete Vortex Shedding”. 
   On the other hand, Fig.2 shows a schematic of the time 
history of the lift acting on the downstream cylinder for L/D=2 
and α = 10°, which was compiled from the experimental result 
by Sakamoto et al.1) Illustrated in this figure is a shift of the 
mean lift of the downstream cylinder, corresponding to a 
bistable flow (a successive alternation of two flow patterns). 
Based on the experimental results, they intensively discussed on 
the characteristics of the bistable flow observed around α = 10° 
and at L / D = 2. The flow, when the lift force of the downstream 
cylinder had a lower mean value, was called “Mode 1” and that 
when the lift shifted to a higher mean value was “Mode 2”. Only 
Mode 1 appeared for the incident angles smaller than 10°, and 
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Mode 2 singularly appeared for the angles larger than 10°. 
   In present study, we conduct numerical simulations to 
investigate the nature of the bistable flow. As was shown in 
Fig.2, the bistable flow is a nonstationary phenomenon. The 
numerical investigation is advantageous for assessing such a 
nonstationary flow field, because it allows us to observe the flow 
behaviors and the physical properties simultaneously. Following 
the above-mentioned geometry in the experiment by Sakamoto 
et al.1), the parameters on the position of two cylinders are set as 
L / D = 2 and α = 5°, 10° and 15°.  The Reynolds number is set 
to 22,000, considering the consistency with the author’s 
previous study11) on the numerical investigation for the flow 
around two circular cylinders in tandem arrangements. 

 
Fig. 1 Geometry configuration for two staggered circular 

cylinders 

 
2. Computational Method 
 
2.1 Algorithm 
   The large eddy simulation (LES) with the Smagorinsky 
subgrid-scale model was employed. The three dimensional 
incompressible Navier-Stokes equation and the equation of 
continuity in non-dimensional form are 
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where ui is the velocity component of grid-scale, and P is the 
sum of the grid-scale pressure and the residual stress. Di,j in Eq. 
(1) is the strain-rate tensor on the grid-scale velocity 
components: 
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The subgrid-scale eddy-viscosity, vsgs, in Eq. (1) is expressed as 
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In Eq. (4), Δ is the filter width and was given as the cubic-root of 
grid volume; the Smagorinsky constant, Cs, was set to 0.1 in this 
study. Additionally, near the cylinder surface, the van Driest 
function was considered as: 
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which was multiplied to Cs in Eq. (4).  
Equations (1) and (2) were transformed into a computational 

coordinates system of ξk (k = 1, 2, 3) , and the contravariant 
component of the velocity 
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was applied to the advection term in Eq. (1) and to Eq. (2). 
These equations yield to 
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where J is the Jacobian and 
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Equations (7) and (8) were discretized with the finite difference 
method (FDM) in the collocated grid system (Rhie and Chow12), 
Kajishima et al.13) ), and were solved by the simplified maker 
and cell (SMAC) method. Following expressions are used for 
FDM discretization hereafter: 
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The second - order Adams - Bashforth method and the Crank - 
Nicolson method were applied to the advection term and the 
diffusion term of the incompressible Navier-Stokes equation, 
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Fig. 2 Schematic of time history of lift acting on downstream 

cylinders at L/D = 2 and α = 10° (compiled from the 
experimental results by Sakamoto et al. 1)  ) 
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respectively. The predicted velocity ui
P in the SMAC method is 

obtained by solving 
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where ∆t is the non-dimensional time step and was set to 0.002, 
and where Ai denotes the advection term on which third-order 
upstream scheme was employed : 
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In Eq. (14), Bi is the fourth-order central FDM discretization on 
the advection term, and in accordance with the suggestion of 
Morinishi et al.14), the following formulation was used in this 
study. 

       
k

ik
k

k

ik
k

i uJUuJUB
3

3

1

1 )(
8
1)(

8
9 δδ −=       (15) 

The second term in Eq. (14) is the numerical viscosity where α 
was set to 1 in this study, and this corresponds to utilizing the 
uniformly third-order polynomial interpolation algorithm 
(UTOPIA). Equation (13) was solved with the successive over 
relaxation (SOR) method. The predicted velocity uP was 
transformed to the contravariant component and was 
interpolated at the staggered position after multiplication by J : 
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Using (JU i )P of Eq. (16), the Poisson equation on the potential φ 
is expressed as 
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This equation is derived such that JU i at the next step 
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satisfy the continuity on JU i (Eq. (8)). Equation (17) was also 
solved by the SOR method in this study. Using φ obtained from 
Eq. (17), the velocity at the next step was corrected as 
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and P at the next step was estimated by computing 
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2.2 Grid system and boundary condition  

The flow around two circular cylinders in staggered 
arrangement was simulated in an elliptic-column space. This 
physical space was discretised with an O-type grid system. 
Figure 3 shows the schematic of the section of the grid system. 
The O-type grid system had the major axis of 60D, the minor 
axis of 30D and the thickness of 1D. In the Cartesian 
coordinates in the physical space, the origin was located at the 
center between the two cylinder-sections and on a side plane of 
the grid system; x1 - , x2 - and x3 - axes were along stream-wise 
direction, transverse to the stream-wise direction and along the 
cylinder-span, respectively. The computational coordinates were 
assigned in terms of body-conformed coordinates ξ k. This three- 
dimensional grid system was made as follow. A two- 
dimensional grid system was made by solving the Poisson 
equation in the x1 – x2 plane. The three-dimensional grid system 
was organized by just aligning the two-dimensional grids along 
the x3 axis. The number of grids on the circumference of each 
circular cylinder was 200 and that in cylinder span-wise 
direction was 26. Figure 4 shows the close-up of the x3 - slice of 
the three-dimensional grid system in the case for L / D = 2 and α 
= 15°. 
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Fig. 3 Physical space around two circular cylinders 

 
Fig. 4 x3 - slice of grid system for α =15° 

 
The non-slip boundary condition was specified on the 

surfaces of the cylinders, and the in-flow boundary condition 
was set to u1 = 1 , u2 = u3 = 0. On the out-flow boundary, an 
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advection-viscous condition (Miyauchi et al.15)) was applied: 
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where um was given to 1. Between the x1 – x2 plane at x3 =0 and 
that at x3 = D, the periodic boundary condition was used. The 
computation was impulsively started, i.e., the initial condition of 
flow was set to u1 = 1 , u2 = u3 = 0 and P = 0.  
 
3. Numerical Results and Interpretation  
 
3.1 Vorticity distribution 
   Figures 5 (a)-(c) show instantaneous x3-vorticity distributions 
at the middle of the cylinder span. The upper and lower shear 
layers separated from the upstream cylinder are notated as 
SL1up and SL1down respectively, while the upper and lower 
shear layers separated from the downstream cylinder are 
abbreviated by SL2up and SL2down. The points where shear 
layers reattach on, or detach from the surface of the downstream 
cylinder are notated with capital letters, A, B, C and D. 
   For α = 5° (Fig. 5(a)), the upper shear layer coming from the 
upstream cylinder (SL1up) reattached on the downstream 
cylinder (point A). The reattaching SL1up was divided into two, 
and one of them flowed onward and combined with SL2up, till 
point D where this separated from the surface; vortices were 
formed by SL2up. The other part of the divided SL1up traveled 
along the inner surface (gap side) of the same cylinder till point 
B. The friction due to SL1up sliding on AB portion drove 
SL2down to be generated from the downstream-cylinder 
surface. After detaching at point B, these were deformed by a 
small eddy formed from SL1down. The small eddy merged 
with deformed SL1up and SL2down, and convected in 
downstream direction. These eddies impinged on the lower 
surface of the downstream cylinder (around point C) 
intermittently. Due to merging of the eddies and the layers as 
well as due to the reaction of their impingement on the 
downstream cylinder, the flow field underneath this cylinder 
became unsteady. The flow pattern registered for α  = 5° can be 
classified as being in the “Proximity and Wake Interference”, in 
conformity with the classification stipulated by Zdravkovich 9). 
    An example of the flow field for α  = 10° is shown in Fig. 
5(b), and this is similar to the flow in the case for α  = 5°. In 
comparison to the case for α  = 5°, a difference found from the 
vorticity-movie observation was that, occasionally, SL1up 
discontinued on the upper part of the downstream cylinder (on 
AD portion) and was entirely redirected through the gap. After 
some sequences, this irregularity ceased and the flow field 
returned to the pattern as shown in Fig.5 (b). This can be a 
bistable characteristic of the flow pattern, which was observed in 
experiments by Sakamoto et al.1), and this will be explained in 
detail in Section 3.4. 
   For α  = 15° (Fig.5 (c)), SL1up reattached onto the 

downstream cylinder at point A, close to the cylinder front 
middle point, and this induced the formation of SL2down 
similarly to the cases of α  = 5 and 10°. Successively, SL1up 
streamed along with SL2down. SL2down slid on the cylinder 
surface, till a point B and detached. The parallel layers of SL1up 
and SL2down formed eddies of opposite sign underneath the 
downstream cylinder, which intersected SL1down. SL1down 
enveloped the pair of eddies and carried it in downstream 
direction; only sometimes the eddy formed by SL2down hit the 
surface of the downstream cylinder at point C. On the upper side 
of the downstream cylinder, distinct vortices were constantly 
formed by the SL2up. This flow pattern belongs to “Gap Flow 
Regime” (Zdravkovich 9) ). 
   Additionally, it should be mentioned that, throughout Figs.5 
(a)–(c), the points A, B, C and D did not have a constant position 
on the circumference of the downstream cylinder, but varied 
slightly. 

 

Fig.5 Instantaneous vorticity distributions for (a) α  = 5°, (b) α  
=10° and (c) α  =15° 

 
3.2 Aerodynamic forces and Strouhal number  
   Based on the interpretation of the flow patterns above, the 
characteristics of the aerodynamic forces is discussed herewith. 
Figs.6 (a)-(c) show the time histories of the lift and drag 
coefficients, CL and CD, for α  = 5°, 10° and 15°. The dotted line 
and the solid line represent the coefficients of the upstream and 
downstream cylinder respectively. In all the cases, the 
fluctuations of CL of the downstream cylinder were much larger 
than those of the upstream cylinder, in which the 
upstream-cylinder CL slightly oscillated around the value of 0. 
Similarly, the fluctuations of the downstream-cylinder CD were 
stronger than for the upstream cylinder. This implies that, the 
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flow incoming from the upstream cylinder has an important 
influence upon any variations of forces acting on the 
downstream cylinder. 
   For α  = 5° (Fig.6 (a)), large magnitudes were observed in 
the CL fluctuation of the downstream cylinder on certain period, 
e.g., 40 < t < 60 and 120 < t < 240. These strong CL-fluctuations 
are possibly caused by the intermittent impingement of the small 
scale eddy (merging with SL1up and SL2down) onto point C 
(Fig.5 (a)). Other fluctuations of CL and CD of the downstream 
cylinder are caused by the constant reattachment at point A and 
the separation at points D and B along with the formation of the 
vortices from SL2up and the convection of the small eddies 
merging with SL1up and SL2down. 
   For α  = 10° (Fig.6 (b)), the magnitude of the CL fluctuation 
of the downstream cylinder was influenced by the shear layer 
reattachment at points A and the separation at points B and D, as 
well as by the vortices generated from SL2up and the small 
eddies from SL1down merging with parallel two layers (Fig.5 
(b)). However, a particularity in this case was the shift of the 
mean in the CL time history of the downstream cylinder. For 
example, the mean CL of the downstream cylinder became low 
locally during 120 < t < 190. This shift of the mean CL is 
associated with a bistable characteristic of the flow and will be 
explained in Section 3.4. 
   For α  = 15°, as observed in Fig.5(c), SL1up reattached to 
the downstream cylinder near its middle front point without 
dividing. This results in the drag of the downstream cylinder 
being stronger relatively to the other α cases. Indeed, the mean 
CD of the downstream cylinder (Fig.6(c) bottom) was larger than 
that for the other cases. On the other hand, the fluctuations of CL 
and CD became large in the range of 160 < t <240, and this is 
due to variation of the reattachment and separation points. 
However, even in this range, the mean value of the 
downstream-cylinder CL remains almost the same. This implies 
that no bistable flow appeared in this case. 
   Figure 7 shows the mean values of CL and CD. The mean lift 
coefficients for the upstream cylinder, 1,LC , was almost zero 
for all incidence angles (Fig.7 (a)), and the drag coefficient for 
the upstream cylinder, 1,DC , had almost same value of 0.8 for 
all cases (Fig.7 (b)). For the downstream cylinder, the mean drag 
coefficient, 2,DC , became negative only for α  = 5°. This is 
because, at this angle, the downstream cylinder is almost 
immersed in the wake of the upstream cylinder. The 
reattachment point A of SL1up locates on the upper side of the 
downstream cylinder (Fig.5 (a)), and SL1up just “wipes” the 
downstream-cylinder surface and does not fully hit it. Hence, the 
drag of the downstream cylinder is more influenced by the flow 
along AB portion and the separation at point B (Fig.5 (a)), 
which induce a negative drag force, oriented to the inside of the 
gap. For the other two cases of α  = 10° and 15° (Figs.5 (b) and 
(c)), the reattachment point A is close to front middle point of 

the downstream cylinder, and SL1up sliding around AB portion 
pushes away the downstream cylinder in the downstream 
direction. Then, as shown in Fig.7 (b), the mean drag coefficient 
becomes positive and increases with the incidence angle α . The 
mean lift coefficient, 2,LC , had similar values of - 0.25 for α  = 
5° and α  = 15°, but for10° had a lower value of -0.4. The lift of 
the downstream cylinder was negative for all the angles. This 
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can be explained from Fig.5: the flow attached around AD 
portion of the cylinder surface pushes the cylinder down, and the 
shear layers around BC portion pull down the cylinder. While 
the above results were totally found to be in agreement with 
experimental results obtained by Sumner et al.3) for Re = 32,000, 
a discrepancy exists in 2,LC  for α  = 10°. The differences in 
the Reynolds number and the aspect ratio of the cylinder 
between the experiment and the present simulation might be the 
causes. 
   The Strouhal number, St, was obtained from power spectra 
of the CL time histories of the downstream cylinder. Figure 8 
shows St versus α . The value of St decreased slightly with the 
increase of incidence angle. For α  = 15°, because two peaks 
were found in the power spectrum of the downstream-cylinder 
CL, both reduced frequencies were plotted in the figure. The 
experimental result for α  = 16° by Sumner et al.2) also indicated 
two peaks in the power spectrum and the corresponding Sts are 
plotted in Fig. 8: the value of the first St was around 0.12 and the 
second one was around 0.33. While the value of the second St in 
the present study were larger than that by Sumner et al., both 
results are in support of the existence of two vortex shedding 
frequencies around this incidence angle. It is conjectured that the 
occurrence of the second St is related to the pair of two eddies 

underneath the downstream cylinder (Fig. 5(c)), however further 
investigations are needed to clarify the exact cause. Except for 
the case of α  = 15°, the values of St in the present study were in 
a good agreement with previous experimental results. 
3.3 Pressure distribution on circular cylinders 
   Fig.9 shows the mean pressure coefficient, PC , and the r.m.s 
pressure coefficient, PC′ , on the cylinder surface. The symbol θ  
for the horizontal axis denotes the clockwise angle from the 
upstream side of the cylinder, and the dotted and solid lines 
represent the values for the upstream and downstream cylinders, 
respectively. Hereafter, we discuss on the characteristics of the 
pressure on the downstream cylinder. 

 

Fig.9 Distributions of PC  for (a) α = 5°, (c) α = 10°, (e) α = 
15° and PC′  for (b) α = 5°, (d) α = 10°, (f) α = 15° ; 

: upstream cylinder, : downstream cylinder 
 
   In case of a single body, the PC - θ  curve has a positive 
peak indicating the stagnation point. From similar discussion, a 
positive peak in the PC  distribution of the downstream 
cylinder indicates the reattachment point of the shear layer from 
the upstream cylinder. Thus, the reattachment point (point A in 
Figs.5 (a)-(c)), where SL1up reattached onto the downstream 
cylinder, is reconfirmed by the presence of the sharp peaks in 
Figs.9 (a), (c) and (e). In the case for α  = 5° (Fig.9 (a)), the 
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reattachment point located around θ = 60°, and those for α  = 
10° and 15° positioned around θ = 40° and 20° respectively. 
Then, consistently with the flow observation in Figs.5 (a)-(c), the 
reattachment angle decreases with increase in α .  
   It is known that the separation point corresponds to the 
inflection point in the PC - θ  curve. In Fig. 9, the separation 
point of SL2up for α  = 5° (point D in Fig.5 (a)) approximately 
corresponded to θ = 100°, and those for α  = 10° and 15° had 
almost the same angle of θ = 90°. For the separation point of 
SL2down (point B in Fig.5), it is difficult to identify the angle 
from Fig.9, but they were approximately around θ = 10° for 
both α  = 5° and 10° (Figs.9 (a) and (c)) and around θ = 320° for 
α  = 15° (Fig.9 (e)). 
   In Figs.9 (b) and (d), the PC′  distribution of the downstream 
cylinder had a peak near the reattachment angle of SL1up ; the 
angles of the peak were of θ = 50° for α  = 5° (Fig.9 (b)) and θ = 
20° for α  = 10° (Fig.9 (d)). It is believed that this peak is due to 
unstable fluctuations of SL1up and SL2down around AB 
portion (Figs.5(a) and (b)). For α  = 15° (Fig.9 (f)), the PC′  
peak due to these shear-layers fluctuation located at θ = 350°, 
and the level of the peak was small relatively to those in the 
other α cases. This implies that the flow near AB portion (Fig.5 
(c)) is rather stable because whole SL1up flows into the gap 
between the cylinders without being divided. Additionally, in 
Fig.9 (b) again, a mild peak existed around θ = 270°. Judging 
from the discussion on the flow field in Section 3.1, it is thought 
that this peak in PC′  is resulted from the small eddies (Fig.5 (a)) 
passing underneath the downstream cylinder; the angle of θ = 
270° in Fig.9 (b) corresponds to the position of point C, 
approximately. In the cases for α  = 10° and 15° (Figs.9 (d) and 
(f)), this mild peak in PC′  was also found around θ = 270°. The 
level of this PC′  peak became low with increase in α, gradually. 
This is because the distance between the convection path of the 
small eddy merging with SL1up+SL2down and the lower 
surface of the downstream cylinder become wide with increase 
in α . 
 
3.4 Bistable flow pattern at α  = 10° 
   Sakamoto et al.1) observed a bistable flow in their 
experiments using two staggered circular cylinders at Re = 
55,000. This bistable flow was characterized as an alternate 
occurrence of two flow patterns called “Mode 1” and “Mode 2”, 
and synchronizing with the flow pattern change, the mean lift of 
the downstream cylinder varied discontinuously (Fig. 2). In this 
section, comparing with the experimental results by Sakamoto et 
al.1) for L / D = 2 and α = 10°, the characteristics of the bistable 
flow observed in the present simulation are explained in detail. 
Same notations as Sakamoto et al.1) of Mode 1 and Mode 2 are 
preserved in this study. 
   Figure 10 shows instantaneous x3-vorticity distributions 
simulated for L / D = 2 and α = 10°, which represents the two 
flow patterns of the bistable flow. Schematics explaining about 

the flow fields are also illustrated in Fig. 10. In Fig.10 (a), SL1up 
reattached to the downstream cylinder surface (point A) and 
flowed inside the gap between the cylinders. In the gap, SL1up 
traveled comparatively near the downstream-cylinder surface 
along with SL2down. This flow pattern is notated as Mode 1 
hereafter. Meanwhile, the flow pattern in Fig.10 (b) is called 
Mode 2; SL1up was divided into two flows after reattaching the 
downstream cylinder. Note that comparing with Mode 1 in 
Fig.10 (a), the position of the SL1up reattachment point in Mode 
2 (point A in Fig.10(b)) located at somewhat upper portion of 
the downstream cylinder. One of the divided SL1up slid along 
the upper side surface of the downstream cylinder, and the other 
passed downward through the gap between the cylinders. Thus, 
two main differences can be noticed between the two flow 
patterns as follows. In Mode 1, SL1up flows only through the 
gap between the cylinder and stays in the vicinity of the 
downstream cylinder together with SL2down. In Mode 2, 
SL1up flows in two directions after reattachment : one through 
the gap and one over the upper side of the cylinder. These 
differences are signaled with dashed-line circles in the 
schematics in Fig. 10. 

             (a)                         (b) 
Fig .10 Bistable flow pattern for α =10°  (a) Mode 1  (b) 
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   In Fig.11(a), the time histories of CL and CD for the 
downstream cylinder are shown, which are the same as the ones 
in Fig.6 (b). In Fig. 11(a), the CL time history showed shifts in its 
mean value : the local LC  calculated from the data in the range 
of 120 < t < 190 had a value of -0.386 while that in the range of 
220 < t < 290 was of -0.297. Along with the shift of LC , a 
slight switch of mean values in the CD time history occurred 
(Fig.11(b)). This evolution of CL and CD time histories is 
associated with the bistable flow pattern. The flow patterns 
shown in Figs.10(a) and (b) represent the flows at t = 140 and 
240 respectively ; Mode 1 then occurred around 120 < t < 190 
while Mode 2 appeared in the range of 220 < t < 290. 
Additionally, because the values of the local LC  in the other 
time ranges (e.g., 40 < t < 100 and t > 300) were almost the 
same as that in 220 < t < 290, the flow in those time range are 
categorized as Mode 2. Thus, Mode2 was dominantly induced 
in the present simulation. On the other hand, when Mode1 was 
induced, the downstream-cylinder CL fluctuated with large 
magnitude around the mean value of -0.386 as seen in Fig 11(a). 
This strong fluctuation occurs probably due to unsteady flows 
near the lower part of the downstream cylinder. 
   Figure 12(a) shows the distributions of the mean pressure 
coefficients, PC , on the downstream cylinder surface. The solid 
line represents the values of PC  in Mode 1, which was 
obtained from the pressure coefficient, Cp, in the range of 120 < t 
< 190 (see Fig.11). The dotted line is for the PC  values in 
Mode 2, which was from the Cp data in the range of 220 < t < 
290. In order to compare the present results with the 
experimental data in detail later, those distributions are presented 
with two figures, where the left figure in Fig.12 represents the 
values of PC  in the range of 0° ≤ θ ≤ 180° and the right one is 
for those in 180° ≤ θ ≤ 360°. The PC  distribution had a peak 
representing the reattachment point of SL1up. In the left figure 
in Fig. 12 (a), this peak in Mode 1 located around θ = 30° and 
that in Mode 2 positioned around θ = 40°. In addition to the 
difference of the peak position, the PC  values for Mode 1 
around 0° < θ  ≤ 40° (upstream and upper side of the cylinder) 
were much larger than those for Mode 2. Furthermore, in the 
ranges of 90° < θ ≤ 270° (downstream side of the cylinder): 
90° < θ ≤ 180° in the left figure in Fig.12 (a) and 90° < θ 
≤ 270° in the right one, the PC  values in Mode 1 were lower 
than those in Mode2. These characteristics result in the drag in 
Mode 1 being larger than that in Mode2. Indeed, in Fig. 11(b), 
the drag at which Mode 1 appeared (120 < t < 190) became 
slightly larger than that in Mode 2. Special attention is paid to 
the PC  values on the lower side surface of the downstream 
cylinder. In the range of 180° < θ < 360° (right figure in Fig.12 
(a)), the PC  values in Mode 1 were entirely lower than those in 
Mode 2. The reason for this is that in Mode 1, as observed in Fig. 
10(a), SL1up and SL2down travel close to the lower side 
surface of the downstream cylinder and a stronger suction is 
driven on the surface. This works so as to pull the cylinder 

downward. Additionally, as mentioned above, the PC  values 
in Mode 1 around 0° < θ  ≤ 40° were much larger and the 
positive pressures push the cylinder downward. These two 
characteristics mainly contribute to induce a stronger negative 
lift in Mode 1(Fig. 11(a)). 
   Figure 12(b) indicates the PC  distributions for Mode 1 and 
Mode 2 experimentally obtained by Sakamoto et al.1), where L / 
D = 2, α = 10° and Re = 55,000. In the range of 0°≤ θ ≤ 180° 
(left figure in Fig. 12 (b)), the PC  values were almost the 
same between Mode 1 and Mode 2. Comparing with the 
present result in the left figure in Fig.12(a), the values around 
0° ≤ θ ≤ 30° and 60° ≤ θ ≤ 180° were large. For 240° ≤ θ 
≤ 360° in the right figure in Fig. 12(b), the difference between 
Mode 1 and 2 can be noticed distinctly: the PC  values for 
Mode 1 was much lower than those in Mode 2. Additionally, 
their PC  values in this θ - range for Mode 1 were much lower 
than those of the present study. In the experiment by Sakamoto 
et al.1), the mean CL for Mode 1 was the value of -0.8 
approximately, while for Mode 2 that was the value around -0.4. 
The values of the mean CL for Mode 1 and 2 in their study were 
much larger than the present ones (Mode 1: -0.386, Mode 2: 
-0.297). This large discrepancy of the mean CL for both modes is 
resulted from the difference in PC  mainly on the lower side 
surface of the downstream cylinder. Although it has not been 
clarified the reason for this difference in PC , possible causes are 
the differences in the surface roughness (surface boundary 
condition) and aspect ratio of the cylinder as well as in Re. 
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4. Conclusions  
 
   Numerical investigations of cross-flow past a pair of circular 
cylinders in staggered arrangement for angles α = 5°, 10° and 
15° at Re = 22,000, having the center to center distance ratio of 
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L / D = 2.0, were performed. The relationship between the flow 
patterns and the aerodynamic forces induced by fluid upon 
cylinders were studied in detail. The values of the Strouhal 
number and the aerodynamic coefficients were almost in 
agreement with those in previous experimental researches. The 
pressure distributions on the downstream cylinder showed clear 
correlations with the flow patterns. A bistable flow pattern, 
accompanied by a shift of the mean values of lift and drag 
coefficients of the downstream cylinder, was simulated at the 
incidence angle of 10°. However, for the two flow modes 
involved in the bistable flow, the lifts and the pressure 
distributions of the downstream cylinder differed slightly from 
experimental results. 
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