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It is known that great possibilities to develop ocean spaces which may be used as resident areas, 
airports, power stations, etc. can be provided by offshore structures with a large deck area. The 
dynamic response properties on an offshore structure of truss spar type are significantly 
depended on the wave force evaluation. In the present study, under the assumption of potential 
flow and linear wave theory, the diffraction in each fluid region can be expressed by an 
eigenfunction expansion method. By using the wave force interaction obtained by the method, 
the dynamic response of truss spar structure is examined and compared with the case of using 
Morison equation. It is suggest that the effect on interaction based on diffraction theory has 
important roles on the reliable evaluation of the dynamic response for the truss spar structure. 
   Key Words:  diffraction theory, wave force interaction, eigenfuntion expansion method, 

Morison equation, truss spar structure, dynamic response. 
 
 
 

1. Introduction 
 

   The wave force is one of the most important loads on 
design of offshore structure. The dynamic response evaluation 
due to wave forces has significant roles on the reliable design of 
the offshore structure. The wave forces on an offshore structure 
are usually obtained by diffraction theory and Morison equation. 
The wave diffraction problem about a vertical circular cylinder is 
a typical problem with exact analytical solution in ocean 
engineering. The analytical solution was proposed by MacCamy 
& Fuchs (1954). Under the assumptions of potential flow and 
linear wave theory, a semi-analytical solution is obtained by an 
eigenfunction expansion approach first proposed for 
impermeable cylinders by Spring & Monkmeyer(1974), and 
latter simplified by Linton & Evans(1990) for N bottom-mounted 
circular cylinders. They had divided the fluid domain into N+1 
regions. The diffraction in each fluid region was expressed by an 
eigenfuncition expansion method. 

The offshore structure such as truss spar structure has great 
possibility for developing the offshore structure with a large deck 
area. While the truss spar structure has been examined to the 
application in the deep water sea, it has great advantages on 
developing offshore structure in relatively shallow water by the 
drastic reduction of reaction forces on the base foundation. Since 
the truss spar structure has multi-cylinders with relatively large 

diameter, the wave force evaluation has important roles on the 
reliable design of the structure. 

In the present study, the eigenfunction method is applied to 
evaluate the wave force to the offshore structure with N 
bottom-mounted cylindrical structure. To verify the present 
method, the results obtained by the numerical evaluation are 
compared with these results such as MacCamy & Fuchs’ analytic 
solution(1954) and Linton & Evans’ numerical results(1990). For 
an idealized truss spar structure, the dynamic response evaluation 
is carried out using wave forces which can be evaluated with the 
diffraction theory and Morison equation. Applying the wave 
force by the diffraction method to the truss spar structure, the 
dynamic response is carried out using modal analysis that can be 
solved by step-by-step integration such as Newmark β method 
(Kawano,et al.(1990)). The wave force interaction effects due to 
multi-spar structure are examined by comparison of these 
responses. It is suggest that the dynamic response of the present 
truss spar structure can be availably evaluated with the Morison 
equation, if the situation can be negligible the wave force 
interaction with respect to truss spar structure. In order to perform 
a reliable evaluation of the dynamic response of truss spar 
structure, it would be necessary to examine the influence of 
interaction between wave and structure by effective method such 
as the present evaluation. 
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2. Formulation 
 

2.1 Wave force interaction with N bottom-mounted cylinders 
It is assumed that the fluid is inviscid and incompressible, its 

motion is irrotational and the fluid motion is small. The geometry 
of the problem is shown in Fig. 1. An arbitrary array of N 
bottom-mounted vertical circular cylinders of radius aj 

(j=1,2,3,……,N), is situated in water of uniform depth h. The 
global Cartesian coordinate system is defined with an origin 
located on the still-water level with the z-axis directed vertically 
upwards. The center of each cylinder at (xj, yj) is taken as the 
origin of a local polar coordinate system (rj, θj), whereθj is 
measured counterclockwise from the positive x-axis. The center 
of the kth cylinder has polar coordinates (Rjk, αjk) relative to the 
jth cylinder. The coordinate relationship between the jth and kth 
cylinders is also shown in Fig. 1. 
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Fig. 1. Definition sketch of an array of cylinders 

 
The array is subjected to a train of regular surface waves of 

height H and angular frequency ω propagating at an angle β to 
the positive x-axis. The uniform geometry of the array members 
in the vertical allows the depth dependency in the solution to be 
factored out as follow: 

( ) ( ) ( )[ ]ti
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where, Re[ ] denotes the real part of a complex expression and  
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In equation (2), g is the acceleration of gravity and the wave 
number k is the positive real root of the dispersion relation 
ω2=gktanhkh. 

The fluid domain is divided into N+1 regions: a single exterior 
region and N boundary regions. The velocity potential of incident 
wave with an angle β to the positive x-axis is presented as 
follow: 

( )βθκφ −= jjri
jI eI cos                    (3) 

where, Ij (=eik(xjcosβ+yjsinβ) is a phase factor associate with 
cylinder j. 

Therefore, equation (3) is represented as follow: 
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in which Jn denotes the Bessel function of the first kind of 
order n. (Gradshteyn & Ryzhik (1965)). 

It can be shown that two-dimensional scattered velocity 
potentials from jth vertical circular cylinder must satisfy a 
Helmholtz equation and the usual radiation boundary condition. 
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Following boundary problems, the general form for the 
scattered wave emanating from cylinder j can be written as: 
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The simplification will be obtained by the introduction of the 
factor Zn

j. If, instead of An
jZn

j, we put Bn
j in equation (7) then it can 

shown that Zn
/(kaj)=0 implies Bn

j=0 and so no restrictions are 
being added by the inclusion of the factor Zn

j. Clearly the value of 
An

j is irrelevant if Zn
/(kaj)=0 and so it is assumed that this is not 

the case in the following analysis. The total potential can thus be 
written as follow. 
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Using Graf’s addition theorem for Bessel functions 
(Gradshteyn & Ryzhik(1965)) equation (8) can be expressed in 
terms of the coordinates (rk, θk) and applying the boundary 
conditions as follow. 
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Some algebra leads to the following infinite systems of 
equations. 
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in which,  k=1,2,3,……,N, ∞<<−∞ m  
It is important to note that Bessel functions of (rj, θj) in terms 

of the coordinates can be related with (rk, θk) in using the 
addition theorem for Bessel functions. It must be rk<Rjk. This is 
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certainly true on the boundary of the kth cylinder for all j and thus 
equation (10) is valid. The expression obtained for (rk, θk) is in 
fact as follows 
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And this expression is valid if rk<Rjk for all j. This is therefore 
an expansion valid near to cylinder k. Replacing m by -m in the 
final term of equation (11) allows us to write this term as 
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The group of terms contained within the brackets can now be 
substituted for using the infinite system of equations (10). The 
resulting simple formula is 
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This expression can be provided by an extremely simple 
formula for the velocity potential near any cylinder. In particular 
the velocity potential on the kth cylinder reduces to 
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where Wronskian relations for Bessel functions have been used. 
In order to evaluate the constants An

j the infinite system (10) is 
truncated to an N(2M+1) terms. 
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in which, k=1, 2, 3, ……, N, m=-M, ……, M 
By increasing M terms greater accuracy can be achieved with 

the expense of computing time. From examinations it is assumed 
that, except when the cylinders are very close together, taking 
M=10 could produce accurate results to all following 
calculations. 

The first-order force on the jth cylinder (Re{F je-iωt}) is givens 
by integrating the pressure over the surface of the cylinder as 
follows 

( ) ( )∫ ⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

−=
π

θ
θ

θ
θφκ

κ
ρ 2

0 sin
cos

,tanh
2/

j
j

j

jj
jj dah

aHg
F (16) 

in which the upper elements of a bracketed pair refer to the force 
in the x-direction and the lower elements to that in the y-direction. 
It can be also expressed with using equation (14) as follows 
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2.2 Dynamic response due to wave forces 
 
The dynamic response properties of truss spar structure due to 

wave force are expected to be significantly depended on the wave 
force evaluation. It is known that the diffraction theory is more 
suitable for the wave force evaluating of structure with relatively 
large diameter. Otherwise, the wave force evaluation of many 
offshore structures is performed with the Morison equation. In 
the present study, the dynamic responses of truss spar structure 
are examined in order to evaluate interaction effects between the 
structure and the wave force. The wave force can be evaluated 
with the water particle motion such as velocity and acceleration 
equation. For an idealized truss spar structure as shown in Fig.2, 
the governing equation of motion can be expressed with the finite 
element method as follows: 

[ ]{ } [ ]{ } [ ]{ } { }FxKxCxM =++ &&&         (18) 

in which [M], [C] and [K] denote the mass matrix, damping 
matrix and stiffness matrix, respectively, and {x} denotes the 
displacement vector. Using the Morison equation, the external 
force {F} denotes the wave forces expressed with the drag force 
and inertia force. 
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where {v& } and {v&& } denote the velocity and acceleration of 
the water particle. For the structure subjected to the diffraction 
and the wave force interaction, the wave force can be evaluated 
with the acceleration of water particle. Obtaining the acceleration 
of the water particle, the wave force on the structure can be 
determined with the equivalent nodal force such as expressed in 
Morison equation.  

To apply the wave force interaction to the modified Morison 
equation, the wave force interaction can be expressed with 

MM
j vDCF &&

4

2πρ=                      (21) 

Using equation (17), the acceleration of the water particle can be 
expressed with 
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here, the difference of CM is very small for D=10m. So that CM is 
not modified in this study.  

If the dynamic response is restrained within linear response, 
the governing equation of motion can be effectively determined 
with the modal analysis. 
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Applying the eigen value analysis for equation (23), it can be 
expressed with the following equation. 
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Equation (25) can be solved by step-by-step integration such as 
Newmark β method. 
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Fig.2 Analytical model of a truss spar structure 

 
3. Numerical results and discussions 
 
3.1 The wave interaction with structure 

To verify the wave forces evaluation, the present method is 
compared with these results such as MacCamy & Fuchs(1954) 
and Linton & Evans(1990). Comparison is made for the ratio 
between the water depth to a radius of the cylinder, h/a=5. 

Fig.3 shows that the wave forces are non-dimensionalized by 
ρgHa2. The abscissa denotes the nondimensional wave number. 

It is known that there is no difference for the nondimensional 
wave number under 2.5. 
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Fig.3  Comparison of dimensionless wave forces on a single 

circular cylinder for h/a=5.0 
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Fig.4  Comparison of dimensionless amplitude of the wave 

forces on four cylinders for a/h=1/2, R/h=2, β=π/4 
 

The wave force interaction acting on arrays of vertical circular 
cylinders is examined by comparison with the results of Linton & 
Evans(1990). The results can be obtained from equation(21). The 
wave force interaction with structure is examined about four 
cylinders arranged at the vertices of a square of side distance(R). 
The various parameter are a/h=1/2, R/h=2 and β=π/4. The 
cylinders are numbered clockwise 1-4 and are situated at (-2a, 
2a), (2a, 2a), (2a, -2a) and (-2a, -2a) respectively, so that the 
forces in the direction of wave advance on cylinders 1 and 3 are 
identical. It is noted that the wave force by the present method 
gives the good agreement to the results of Linton & Evans(1990). 
The curve shows that interaction effects can be extremely 
important in determining the amplitude of the wave forces. 
Therefore, the present method on wave force evaluation is very 
useful to accurate the wave forces acting on arrays of vertical 
circular cylinders. 
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3.2 Dynamic responses of truss spar structure 
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Fig.5  Comparison of dimensionless wave forces on four spars 

for h/a=17, β=0  
 

The dynamic response characteristics of truss spar structure as 
shown in Fig.2 are carried out using the present method for wave 
force evaluation. The truss spar structure is composed of two 
parts. One part is the upper structure that is composed of a middle 
size spar(D=10m). The upper structure can support the deck 
weight by having buoyancy and the wave force can be evaluated 
with Morison equation and wave force interaction. Another part 
is the lower structure that is composed of a small size pipe 
member(D=0.3m). The lower structure can support 10% of the 
deck weight and the wave force be influenced by Morison 
equation. The spars are numbered by clockwise 1-4. So that the 

nodal 1 is located on the top of spar 4. The incident wave acts on 
the right direction through spar 4 and spar 1. The structure has the 
characteristics that unit weight is 77.0(kN/m3), stiffness coefficient 
is 2.1×108 (kN/m2) and shear stiffness coefficient is 8.1×107 

(kN/m2). 
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Fig.6  Comparison of dimensionless wave forces on four spars 

for h/a=17, β=π/4  
 

Fig.5 shows comparison of dimensionless wave forces on four 
spars. Here the various parameter are a=5m, h=85m and β=0. 
The wave forces are presented for a relative cylinder distance 
40m, 80m and 120m, and wave period 9sec, 10sec and 11sec. It is 
noted that a majority of the waves considered in the range of 
7-16sec give a value of ka less than 0.5. In the case of less than 
nondimensional wave number ka=0.5, there is exactly existed the 
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variation of wave force by the interaction with truss spar structure. 
The wave force interaction of spar 4 is much larger than the spar 
2, because the spar4 is located in front of the spar2. The wave 
force of spar 4 is decreased gradually by increasing the distance 
and wave period. It is understood that the interaction effect is 
depended on the distance among spars and wave period. While 
the wave forces of spar 2 have a similar value at the distance 
about 70m, there is slightly difference for each distance of spar.  

Fig.6 shows the wave forces of spar 4 and spar 2 for β=π/4. 
The wave forces of spar 4 are nearly the similar values at R=60m, 
and in the cases of T=10sec and T=11sec, the wave force of spar 
2 has a similar value when the distance is less than 100m. It is 
noted that in case of β=π/4, the variation of wave force 
becomes drastic than β=0, because the interaction effect of spar 
1 and spar 3 contributes to other spars for changing the incident 
wave angle. It is understood that the wave forces of spar 4 is 
considerably influenced by incident wave angle, and the wave 
force of spar2 is slightly influenced.  
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Fig.7  Comparison of dimensionless wave forces on four spars 

for h/a=17, R=80m, β=0 
 
It is known that the wave force due to the diffraction wave 

theory could provide the exact evaluation for the structure with 
large diameter. Otherwise, the Morison equation is widely 
applied for the wave force evaluation with the offshore platform 
with the member of relatively small diameter. While the wave 
force by the Morison equation is represented with the inertia 
force and the drag force, the inertia force is dominated for 
increasing the diameter of the member. For the wave force 
evaluation such as the truss spar structure with the relative large 
diameter member, it is necessary to examine comparison 
between the wave force interaction and the Morison equation. 
Fig.7 shows comparison due to these wave force evaluation. The 
wave force due to the Morison equation sharply increases until 
the wave number is 0.15, and has a similar value after that. The 
wave force of spar 2 by the interaction has similar results to 
Morison for the wave number under ka=0.25(T=9sec) and 
gradually becomes more increased than the Morison equation 
after that. The wave force of spar 4 has a similar value of the 

Morison for the wave number under ka=0.12(T=13sec) and has 
considerable variation after that. To inspect the effects of wave 
force interaction of spar 4, the dynamic response of truss spar 
structure is desired to examine in three cases such as 
ka=0.16(T=11sec), ka=0.2(T=10sec) and ka=0.25(T=9sec). It 
corresponds that the wave force of spar 4 has a maximum wave 
force at T=11sec, a similar wave force at T=10sec and a 
minimum wave force at T=9sec. If the nondimensional wave 
number becomes larger than 0.3, the wave period becomes less 
than 7sec.  
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Fig.8  Time histories of displacement responses 
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Fig.9  Time histories of bending stress responses 

 
Taking into account for the interaction effects on the wave 

force, it is expected to have important roles on the dynamic 
response evaluation of the truss spar structure. Fig. 8 shows time 
histories of displacement response at the nodal point 1 for the 
wave height, 7m and the wave period, 11sec. It is observed that 
the displacement response for the wave force interaction is 
slightly higher than the Morison, as noted that the wave force 
interaction has larger than the Morison at the period, 11sec, as 
shown in Fig.7. 

Fig.9 shows the time histories of the bending stress at the nodal 
point 8. The bending stress response, which the wave force 
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interaction acts on structure, is also slightly higher than the 
Morison equation. It is noted that while the difference of 
displacement response and bending stress response are small, the 
wave force interaction gives considerable effects on the dynamic 
responses of truss spar structure. 
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Fig.10  Relations between maximum displacement responses 

and wave height 
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Fig.11  Relations between maximum bending stress response 

and wave height 
 
Fig.10 and Fig.11 show relations between maximum 

displacement response and wave height, and relations between 
bending stress response and wave height, respectively. The four 
lines correspond to the wave height from 3m to 10m and the 
wave period, 11sec. Comparing the responses to the wave force 
interaction with the Morison equation, the former becomes 
slightly larger response than the latter. It is noted that the 
influence of the wave force interaction should be enlarged as 
increase of wave height. It is understood that the dynamic 
response of truss spar structure may be very susceptible of 
increasing wave force.  

Fig.12 and Fig.13 show relations between maximum 
displacement response and wave period, and relations between 
maximum bending stress response and wave period at spar 4, 

respectively. By comparing all cases, the response of the wave 
force interaction is lager than the Morison equation except for 
T=9sec. It is understood that the wave force of spar 4 is lower 
than the Morison equation at T=9sec. The wave period has 
significantly effects on the wave force interaction, because the 
changing of the wave period means the changing of wave force. 
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Fig.12  Relations between maximum displacement response 

and wave period 
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Fig.13  Relations between maximum bending stress response 

and wave period 
 
Fig.14 and Fig.15 show relations between maximum bending 

stress responses and wave height, and relations between 
maximum displacement responses and wave height, respectively. 
From the comparison of the wave force interaction and the 
Morison, there is a slightly difference for the wave periods over 
13sec, but the difference gradually increases as the wave period 
under T=13sec. It is understood that the wave force of spar 4 has 
a similar value of the Morison over T=13sec, and it has the 
difference for other wave periods as shown in Fig.7. It is noted 
that the wave force interaction effects would have considerable 
effects to the dynamic response of truss spar structure. If the 
location and distance of spar is changed, the wave force 
interaction effects would take some contributions on the dynamic 
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response evaluation of truss spar structure. From the analytical 
results, it is expected to evaluate efficiently the wave force by the 
Morison equation for the truss spar structure used in this study. 
However, in case the effect of wave force interaction is increasing 
as becomes shorter the distance between spar and spar and larger 
the diameter of spar, Morison equation can not express exactly 
the wave force acting on spar. So that, in order to perform a 
reliable design of truss spar structure, it is important to clarify the 
wave force interaction effects with respect to the wave force 
elevation due to the Morison equation. 
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Fig.14  Relations between maximum bending stress responses 

and wave height  
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Fig.15  Relations between maximum displacement responses 

and wave height 
 
Conclusion 

 
The dynamic response characteristics of truss spar structure 

under the wave conditions are examined. The results are 
summarized as follows: 

(1)  The wave force interaction due to the diffraction theory is 
examined by the eigenfunction method. It is suggest that 
since the wave force interaction has important effects on 

the response evaluation for the nondimensional wave 
number under 0.5, it is important to examine the effects of 
the location, the distance of spar and the incident direction 
of wave for the truss spar structure. 

(2)  It is suggest that the dynamic response of the present truss 
spar structure can be evaluated availably with the Morison 
equation, if the situation can be negligible to the 
interaction effects with structure. However, in order to 
carry out the reliable design of truss spar structure, it is 
important to examine the wave force interaction effects. 
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