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In this research, vibration characteristics are estimated from the ambient vibration of highway 
bridge by the block companion form realization theory. Two methods are stated herein such as 
formulation of block companion system matrix; (i) directly from block Hankel matrix, (ii) 
from ARMA model parameter G through Yule-Walker equation. These methods have applied 
to a 152m long Langer bridge and its dynamic characteristics were estimated automatically 
from multipoint measurement of ambient vibration. As the ambient vibration characteristics 
affect the estimation accuracy, two different cases were taken into consideration and the 
estimation accuracy was evaluated. 
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1. Introduction 

 
System identification by modal analysis1) has brought the 

opportunity to accurately estimate structural dynamic 
characteristics (frequency, damping constant, and vibration 
mode). In order to obtain bridge dynamic characteristics 2) 3) by 
modal analysis method, ambient vibration is assumed as white 
noise or external force with a spectrum structure of certain 
characteristics. In this method, structural dynamic characteristics 
is obtained from experimental data through theoretical transfer 
function by curve fitting using non-linear least square method. 
On the other hand, dynamic characteristics could be estimated 
using AR or ARMA model4) ~ 6) from time series analysis 
without consideration of a physical model.  

In the recent years, computation of system matrix7) ~ 11) by 
realization theories become easy because calculation of large 
matrix at high speed can be done with the help of high 
performance personal computer. Authors proposed automated 
estimation of bridge dynamic characteristics from ambient 
vibration using block companion form realization method12) .   

Discretized state equation is transferred to block companion 
state equation by observability matrix and ARMA model is 
formulated by corresponding block companion form. However, 
the block companion form state equation introduces a standard 

realization theory that is formulated from the relation of block 
Hankel matrix which is similar to Ibrahim time-domain 
method13) 14). In stochastic realization theory, block Hankel 
matrix is formed by covariance matrix, though in deterministic 
realization theory, block Hankel matrix is formed by Markov 
parameter. In addition, the relation between the block Hankel 
matrix formulated by covariance matrix and the system matrix 
by the block companion form has been included with the 
Yule-Walker equation, from which classic multi-dimensional 
ARMA model coefficient is obtained. In the future, as an 
inverse problem of structural identification from measurement 
data, ARMA model will be an important method 15) for the 
modeling of existing structures.  

This research achieves dynamic characteristics estimation 
with ambient vibration of a highway bridge by the stochastic 
block companion form realization theory. Two methods are 
stated herein for formulation of block companion system 
matrix; (i) directly from block Hankel matrix, (ii) from ARMA 
model parameter G through Yule-Walker equation.  

The methods have applied to an existing bridge for 
automated estimation of dynamic characteristics. The 152 m 
long Kabashima bridge, situated in Nagasaki city, was selected 
as object bridge and its dynamic characteristics were estimated 
from the multipoint measurement of ambient vibration. As the 
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ambient vibration characteristics affect the estimation accuracy, 
two different cases, such as stationary ambient vibration with 
wind force and non-stationary ambient vibration intermitting 
moving vehicles were taken into consideration for dynamic 
characteristics estimation.  

 
 

2. State space representation of equation of motion 
 

2.1 State space representation of equation of motion 
Bridge structures can be modeled by FEM and their 

dynamic characteristics are expressed through n DOF system of 
following equation of motion for external forces acting on r 
nodes out of n nodes.  

)()()()( tttt dfkzzczm =++ &&&    (1) 
where nt Rz ∈)(  and rt Rf ∈)( are displacement and external 
force vector. nxnRm∈ , nxnRc∈  and nxnRk∈  are mass, damping 
and stiffness matrices for the structural system, respectively. 
Moreover, rn×∈Rd is the vector of input force when acting on 
r nodes. General viscous damping is considered in this study. 
For gradual change of )(τf within Tttτt kkk +=≤≤ +1 , in 
this time interval )(τf is constant vector as )(kf : 

    )()()( 1+≤≤= kk tτtkτ ff      (2)  
similarly, proceeding with discretization of displacement 

)(tz and velocity )(tz&  into )(kz and )(kz& . External force 
nk 2)( Rp ∈ and state variable nk 2)( Rx ∈ can be represented as 
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mk Ry ∈)(  is expressed as m point observation of structure in 
terms of displacement )(kz and velocity )(kz& and discretized 
state equation is formulated from Eq. (1) as 
 

        )()()1( kkk BfAxx +=+                  (4-1)
 )()( kk Cxy =                          (4-2) 

and system matrix, external force matrix of linear state equation 
are  
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where, nn 22 ×∈RA  , rn×∈ 2RB . 

Coefficient matrices for discretized state equation are 

Ttt ee kk AAA == −+ )( 1  

   BAIBB AA )(1

;
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where nn 22 ×∈RA , rn×∈ 2RB and observation matrix 
nm 2×∈RC can be found from observation value )(ty and 

extracted from the state variable )(tx .  
 

2.2 Block companion form state equation 
Observability matrix of discretized state Eq. (4) is  
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the system is observable for nrank p 2)( =P and npm 2=× . 
Next relationship can be formulated from the characteristics of 
multi-dimensional observability (Appendix A):  
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×∈RG  is coefficient matrix. The system matrix 
A is thus converted to generalized observable system matrix as 
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then, discretized state variable in terms of observation matrix 
pP can be:  

     )(ˆ)( kkp xxP =                        (10) 

Therefore, block companion form state equation will be:  
)(ˆ)(ˆˆ)1(ˆ kkk fBxAx +=+                   (11-1) 

)(ˆˆ)( kk xCy =                             (11-2) 
where, force matrix and observation matrix are respectively 
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and 

[ ]00ICPC L== −1ˆ
p .       (13) 

 
2.3 Ambient vibration modeling and auto correlation 
function of observation process 

Ambient vibration is modeled by random vibration theory 
for linear dynamic system including unknown external force 
acting on structure. External force is assumed as stationary 
white noise process rk Rw ∈)( with zero mean value. The 
covariance of )(kw can be expressed: 
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where [ ]E is mathematical mean value and rr×∈Σ Rw . The 
mean value of external force and initial boundary condition are 
to be zero. In this case the solution process )(kx  is stationary 
process with zero mean value and the covariance is as  
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[ ]TkkEk )()()( xxRx =                (15) 

Covariance equation of solution process is formulated by 
substituting Eq. (4-1) into Eq. (15) and using the relation of Eq. 
(14). For ∞→k , )(kxR is xR and covariance of the solution 
process is obtained as 

 TT BQBAARR xx +=                  (16) 

whereQ is as follows: 

[ ]TkkE )()( wwQ=                     (17) 

The auto correlation of solution process for stationary process is 
the time invariant of )( kl +x and )(lx :  

[ ]TlklEk )()()( xxRxx +=        (18) 

Next relation is formulated by substituting Eq. (4-1) into Eq. 
(18) and using the Eq. (14), we can obtain:  

 )0()( ≥= lk k
xxx RAR          (19)  

The covariance matrix )(kyyR  of observation data is 
expressed as follows according to the Eq. (4-2) and Eq. (19) :  
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where TCARB x=ˆ . 
 
 
3. Relation between Hankel matrix and block companion 
system matrix  

 
3.1 Decomposition of Hankel matrix  

Defining )1()1( +×+ qp block Hankel matrix: 
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pqp k QAPH                   (21) 
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The matrix 1+pP is called extended observability matrix 
and the matrix 1+qQ  is called extended controllability matrix. 
The minimum dimension of the state matrix is nn× for 
n order system. In that case the rank of Hankel matrix is n . 
 

3.2 Estimation of block companion system matrix Â  

The next equation is formulated from extended 
observability matrix stated in Eq. (8)  
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right multiplying qQ  on both terms of Eq.(23) yields 

  q
s
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p QAPAQAP ˆ 1 =+                (24) 

Using the relationship of Hankel matrix written in Eq. (21):  

)1(ˆ)( −= ss HAH                       (25) 

for simplification, )(, sqpH is expressed as )(sH and detail 
form of Eq. (25) will be:  
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(1) For obtaining block companion system matrix Â    
Block companion matrix Â  can be formulated from Eq. 

(26) using least square method as below: 

1))1()1(()1()(ˆ −−−−= TT ssss HHHHA         (27) 

(2) Obtaining [ ]pGGGG −−−= L21 as elements of 
Â  

If )1(1 −= sHT  and ))1((
2

rowqmmx −∈T  are the lowest 
blocks of )(sH , then Eq. (26) would be similar as the 
Yule-Walker Eq. (B-6) of Appendix B andG can be found as     

1
112 )( −= TTTTG           (28) 

Â can be formed by G according to Eq. (9). In addition in the 
both cases, Â and G can be obtained using singular value 
decomposition. 
 
 
4. Dynamic characteristics estimation  
 
4.1 Covariance matrix estimation using measured signal  

To obtain Eq. (26), it is necessary to calculate the covariance 
matrix of the measured signal. Measured signal is assumed to 
have ergodicity characteristics and covariance matrix of 
observation process was calculated according to the time 
average. In case of m dimensional discrete measured signal, 
covariance of observed signal )(ˆ ky is 
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4.2 Modal analysis of block companion matrix 
(1) Frequency and damping constant estimation 

For similar relation of Â and A , eigenvalue and eigenvector 
Ψ of Â can be obtained by eigenvalue analysis:  
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where Δ= kek
** λμ and Δ= kek

λμ are complex conjugate. kλ  
and *

kλ  are the thk order eigenvalues of motion equation 
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stated in Eq. (1) and will be as 

dkkkdkkk ii ωσλωσλ −−=+−= *,  (32) 

For proportional damping system, real and imaginary part 
represents modal damping and natural frequency as  

kkk h ωσ = ,  21 hkdk −=ωω     (33) 

The frequency and modal damping of the structural system are 
obtained from the eigenvalue of Â :  
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for proportional damping system, thk order natural frequency 
kω and modal damping kh can be expressed by Eq. (35): 

22
kdkk σωω += , kkkh ωσ /=     (35) 

(2) Vibration mode estimation system 
Eigen equation of matrix A for discretized state equation is 

as follows: 
 0ΨΓA =− )(       (36) 

left multiplying of the observation matrix pP into Eq. (36) will 
convert the related eigen equation of system matrix Â :  
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therefore, the eigenvector of Â will be: 
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upper m rows ofΦ are the eigenvectors of system matrix Â for 
mode vectors corresponding m points observation matrix of 
state space Eq. (4). 
(3) Extraction of frequency, modal damping, and mode 
shapes  
a) Estimation of frequency and damping constant 

The eigenvalues of discrete system of Eq. (32) can be 
rewritten as 

)sin(cos TiTe dd
h

k
kk ωωλ ω += Δ−   (39) 

these eigenvalues are displayed on the complex plane by  
Th kker ω−=               

TT kdk ωωθ 11 tantan −− ≅=        (40)  

for small value of damping constant kdk ωω ≅ . Therefore, 
frequency maxω and modal damping maxh are desirable to be 
calculated. The extraction range of the frequency and modal 

damping will be as following:  

1maxmax <<− re Th ω      Tmax
1tan0 ωθ −<<   (41) 

b) Vibration mode estimation 
The vibration modes can be derived from the eigenvector of 

system matrix Â  using Eq. (38) for m point observation:  
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Eigenvalue kλ  is calculated by realization method, then 
corresponding eigen mode can be obtained from that eigenvalue 
as  
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5. Automatic measurement with ambient vibration 

 
5.1 Object bridge 

A Langer bridge, situated in Nagasaki city, was selected as 
object bridge and its dynamic characteristics were estimated 
from the multipoint measurement of ambient vibration. Figure 1 
shows the front view and Table 1 shows the properties of 
Kabashima Bridge.  
 

 

Fig.1 Kabashima bridge  
 
 

Table 1 Properties of Kabashima bridge 

Bridge Type Steel Langar Truss Bridge

Length (Center Span) 227 m ( 152 m)

Width 7.5 m

Construction Year 1986
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5.2 Experiment 
The bridge’s ambient vibration measurement was 

conducted with accelerometer. Five accelerometers were 
installed on the bridge to obtain vertical acceleration 
simultaneously as shown in Figure 2(a). Two accelerometers 
were installed at the middle of bridge span for recording the 
torsional vibration data as shown in Figure 2 (b). Table 2 shows 
the measurement apparatus used during the experiment. 
Measurement program was developed with LabVIEW 7.5 
(National Instruments).  

We conducted offline analysis to estimate the bridge’s 
dynamic characteristics. 1200 consecutive time history data per 
channel are hired to obtain one dynamic characteristic for 30 
second according to data sampling frequency, which was 
selected as 100Hz. By 50 time repetitions of the operation, we 
could evaluate the bridge’s dynamic characteristics change 
visually.  

The indicator to evaluate dynamic characteristics is 
controlled by characteristics of ambient vibration. The bridge is 
surrounded by strong wind condition because it locates at the 

very top of the Nagasaki Peninsula. This  means the ambient 
vibration observed on the bridge is influenced by wind 
conditions. 

Naturally, by moving vehicles on the bridge, the bridge 
vibration will be induced strongly. Ambient vibration by wind 
load constantly induces low frequency vibration to the bridge, 
where ambient vibration by moving vehicles induces relatively 
high power 3 to 5 Hz frequency, which means the automobile’s 
vibration characteristics. Accordingly, two cases were focused 
in this paper. One is the ambient vibration data induced by 
constant wind load, and the other is the ambient vibration 
induced by moving vehicles. The former case was indicated in 
Figure 3 (a) and (b) with its power spectrum density as recorded 
vertical acceleration under the strong wind conditions in June, 
2007. The latter case was indicated in Figure 4 (a) and (b) with 
its power spectral density as recorded under the moving vehicles.  
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(a) Vertical acceleration measurement sensors installation 
 

Sensors position for 
torsional measurement

Sensors position for 
torsional measurement

 
 (b) Torsional measurement sensors installation 

Fig. 2 Measurement apparatus installation to the bridge  
 

Table 2 Measurement apparatus 

SA-611 (TEAC)Amplifier

OS:Windows XP ProCF-19  (Panasonic)Personal computer

Sensitivity: 300 (mv/m/s2 )
Frequency response: 0.02-200Hz

710  (TEAC)Accelerometer

Analogue input: 16ch ,
12bit

DAQ Card-6062E 
（National Instruments)

A/D converter

SpecicficationType (Manufacturer)

SA-611 (TEAC)Amplifier

OS:Windows XP ProCF-19  (Panasonic)Personal computer

Sensitivity: 300 (mv/m/s2 )
Frequency response: 0.02-200Hz

710  (TEAC)Accelerometer

Analogue input: 16ch ,
12bit

DAQ Card-6062E 
（National Instruments)

A/D converter

SpecicficationType (Manufacturer)
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(b) Power spectrum density (Case 1)  

Fig. 3 Ambient vibration data (Case 1)  
 
 

Time (s)
0 50 100 150 200 250 300

-0.8
-0.4

0
0.4
0.8

A
cc

el
er

at
io

n 
(m

/s
2 )

0 50 100 150 200 250 300
-
-

0

Time (s)
0 50 100 150 200 250 300

-0.8
-0.4

0
0.4
0.8

A
cc

el
er

at
io

n 
(m

/s
2 )

0 50 100 150 200 250 300
-
-

0

Time (s)
0 50 100 150 200 250 300

-0.8
-0.4

0
0.4
0.8

A
cc

el
er

at
io

n 
(m

/s
2 )

0 50 100 150 200 250 300
-
-

0

Time (s)
0 50 100 150 200 250 300

-0.8
-0.4

0
0.4
0.8

A
cc

el
er

at
io

n 
(m

/s
2 )

0 50 100 150 200 250 300
-
-

0

 
(a) Acceleration data (Case2) 
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(b) Power spectrum density (Case 2) 
Fig. 4 Ambient vibration data (Case2)  

-193-



  

The both data were recorded with the No.1 sensor location that 
is shown in Figure 2 (a). The consecutive series of data were 
used for estimating dynamic characteristics. By comparing each 
power spectrum density of the Figure 3(b) and Figure 4(b), it is 
recognized that 3 to 7 Hz frequencies have induced under 
vehicles intermitting.  
 
 
6. Automatic measurement for stationary vibration   

(Case 1) 
 

6.1 Extraction of eigenvalue 
Eigenvalues from system matrix Â  were plotted in a 

complex plane as shown in Figure 5. The maximum frequency 
and modal damping restricted the extraction range for 
eigenvalue. The complex eigenvalues extracted from this region 
have considered for frequency and modal damping estimation. 
In addition, vibration modes are estimated from the eigenvector 
corresponding to the eigenvalues. 

 
6.2 Comparison of the estimation method 

In this study, two methods were taken into consideration. 
The first method was stated in Eq. (26). In this case, dynamic 
characteristics were estimated from the eigenvalue of 
companion matrix in Eq. (27), which was directly formulated 
from Hankel matrix. Second method was stated in Eq. (28). The 
results from ambient vibration data were almost same for both 
methods. Therefore, in this study, first method was employed 
for dynamic characteristics estimation due to the simplicity of 
calculation. 
 
6.3 Estimation results (Case 1) 
(1) Estimation of frequency 
The dynamic characteristics were estimated based on the 
ambient vibration data, which was measured on a 
comparatively windy day. The data sampling frequency of 
acquiring ambient vibration was set as 100 Hz. 1200 consective 

data were processed for each time estimation and the process 
was continued for 50 times repeatedly as shown in Figure 6. 
The figure shows that frequency up to 5th mode can be 
estimated stably. According to the ambient vibration 
measurement, shown in Figure 3, continuous estimation is 
possible for stationary ambient vibration. Moreover estimated 
frequencies between 4Hz to 5Hz also gathered in order, but we 
can see that those estimation accuracies are comparatively lower 
than up to 5th mode.  
(2) Estimation of modal damping 

Figure 7 shows the estimated values of modal damping. 
Based on the experimental result it can be seen that the modal 
damping estimation can be realized for well-excited vibration 
modes. However deviation of estimated modal damping is 
larger than the deviation in frequency estimation. So this result 
would be compared with other method. Figure 7 indicates that 
the modal damping is within 0.05, and as a general evaluation 
criterion, it is possible to estimate modal damping. 

 

Fig. 6 Estimation of frequency 
 

 
Fig.7 Estimation of modal damping 

 
Table 3 Estimation accuracy of dynamic characteristics 
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Fig. 5 Extraction of eigenvalue 
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Consideration is added for the mean value and the coefficient of 
variation of the modal damping corresponding to frequency. 
 (3) Estimation accuracy of dynamic characteristics 

Table 3 shows mean value, standard deviation and 
coefficient of variation regarding the estimated frequency and 
modal damping for 50 repeated times. Up to now, the statistical 
analysis for clearly estimated frequency and modal damping is 
not targeted, as the measurement for each time and their 
processing is time consuming. To forecast the deterioration of 
the bridge caused by structural damage or global aging from the 
change in the vibration characteristics, it is necessary to know 
their change statistically for control of maintenance. For this 
reason automated dynamic characteristics estimation and 
processing of large number of observations data are thought to 
be an important. 

Coefficients of variation of frequencies up to 4th mode were 
within 10%. This indicates that high accuracy estimation of 
frequencies has realized. The mean value of 3rd mode frequency 
is 1.946Hz and coefficient of variation is 3.13% i.e. estimated 
value is within the limit of 061.0946.1 ± Hz. Coefficient of 
variation of frequency for 5th mode is within 20%, which means 
estimation accuracy is a little bit lower. 

Estimated values for modal damping were between 0.014 
~0.043 and their coefficient of variation is among 74~164%. It 
can be thought that comparatively steady estimation has realized 
with the accuracy of about 100% for the coefficient of variation.  

 

(4) Estimation of vibration mode 
Figure 8 shows the estimated vibration mode shapes. 

According to the realization theories, we can obtain the higher 
order mode shapes. But actually, it is thought that more than the 
five vibration mode shapes could not be estimated clearly 
because those are dependent on the number and location of 
sensors. The obtained vibration mode shapes are the average of 
50 times estimation and the maximum value of each mode 
shape set as one. The five estimated mode shapes were similar 
in shape of the typical Langer truss bridge except 4th mode 
shape. The 2nd mode shape shows typical arch effect and it 
becomes symmetric mode shape. 2nd and 4th mode shapes are 
same in shape. This is because of the omission of torsional 
mode by placing the accelerometer along the bridge length at 
the time of experiment, and consequently it was not able to 
detect torsional mode. Figure 9 shows the vibration phase for 
the torsional measurement. This was measured by placing 
accelerometer along the width bound of bridge at the middle of 
bridge span as shown in Figure 2(b). Therefore it can be said 
that 4th one is torsional mode shape. 

Thus, a multi-dimensional AR model and block companion 
form realization are able to observe the vibration mode shapes 
easily by the multipoint simultaneous observation compare to 
the modal analysis method. 
 
 
7. Automatic measurement for non-stationary ambient 
vibration (Case 2) 
 

Next, we deal with traffic load, which was induced bridge 
vibration case (Case 2). Acceleration data recorded under the 
traffic flow is shown in Figure 4(a). The figure shows some 
peaks related moving vehicles. As shown in Figure 4(b), 
according to the automobile’s natural frequency of 3 to 5Hz, the 
bridge vibration is induced with not only near the automobile’s 
natural frequency modes, but also the higher modes (5 to 7Hz). 
From this standpoint, under the consecutive measurement, 
estimation results may scatter according to intermittent vehicles.  
 
7.1 Estimation of frequency 

50 times frequency estimation results were shown in Figure 
10. Comparing the result with Figure 6, which is wind load 
induced ambient vibration, we can see that there are some lacks 
or changes in frequency estimation in lower frequency modes 
from 1st to 5th. On the other hand, we can see that relatively 
higher modes, such as around  4，5，6， and 7Hz, have induced. 
By repeating these measurements and by using stable 
estimation results, reliable natural frequency estimation will be 
realized. Thus, intermitting vehicles would affect on estimation 
results’ changes in frequency especially in higher modes. It 
should be observed stable ambient vibration to obtain steady 
estimation results． 
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Fig. 8 Estimation of vibration mode shapes 
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Fig. 9 Torsional vibration measurement 
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7.2 Estimation of modal damping 

Estimation process of modal damping is shown in Figure 
11.  From the estimation results, we can see the 1st mode’s 
modal damping is relatively or extremely big, whereas the rest 
are estimated small. This means that dynamic characteristics 
have not been estimated stably, the modal damping, which is 
very sensitive for estimating the dynamic characteristics, 
remains unstable. To evaluate this phenomenon, statistical 

operation for estimation results of frequency and modal 
damping were performed. 
 
7.3 Estimation accuracy of dynamic characteristics 

Statistical operation results for estimating frequency and 
modal damping are shown in Table 4. As for the frequency 
estimation, the result of coefficient of variation changes from 11 
to 46 %. It is relatively higher number compared with Case1, 
especially in 1st mode of 46.8%. This means that there exist 
errors for estimating lower frequency mode in this bridge under 
the inconstant vehicles intermitting. As for 4th and 5th mode, 
each coefficient of variation is relatively small and realized good 
estimation.  

As for the estimation of modal damping, the result of 1st 
mode shows 0.191 of mean value and 155% of coefficient of 
variation. The mean value overrate the actual phenomenon and 
also the coefficient of variation remained high. As shown above, 
same with the case for frequency estimation, the system could 
not estimate lower frequency mode. We found that the 
coefficient of variation shows big value in Case 2 compared to 
Case 1 for estimated modal damping.          

Thus, it is important to evaluate the characteristics of 
ambient vibration beforehand to realize automatic bridge 
vibration characteristics estimation.  
 
7.4 Estimation of vibration mode 

Figure 12 shows estimated vibration mode shapes, which is 
mean value of consecutive 50 time repetition. As shown in this 
figure, same as Case 1, good estimations were realized. The 
reason why the 2nd and 4th mode shapes are same, same with 
Figure 8, the 4th mode shape represents torsional vibration mode 
shape.  
 
 
8. Conclusions 

 
In this paper, automatic estimation method of dynamic 

characteristics proposed by the stochastic block companion 
form realization with ambient vibration. The summary of the 
paper is as follows. 
(1) Formulation of block companion system matrix from block 
Hankel matrix, and Yule-Walker equation were indicated and 
dynamic characteristics estimation-equations were derived for 
simultaneous multipoint ambient vibration measurement of the 
bridge． 
(2) This method was applied to the ambient vibration 
measurement for the existing bridge and the same estimation 
results were found for stochastic block companion form 
realization method and ARMA model through Yule- Walker 
equation. In addition, stochastic block companion form 
realization method can be used for dynamic characteristics 
estimation due to its simplicity of programming. 

 
Fig.10 Estimation of frequency 

  
Fig.11 Estimation of modal damping 

 
Table. 4 Estimation accuracy of dynamic characteristics 
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Fig. 12 Estimation of vibration mode shapes 
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(3) Stochastic block companion form realization method was 
applied to obtain the dynamic characteristics of existing bridge 
for multipoint ambient vibration measurement. Dynamic 
characteristics were estimated for the stationary state of ambient 
vibration. Especially, automated estimation of vibration mode is 
the efficiency of this method. 
(4) Dynamic characteristics were estimated for stationary state 
of ambient vibration caused by wind force and non-stationary 
ambient vibration by moving vehicles. Stable and continuous 
estimation of dynamic characteristics was possible for stationary 
ambient vibration. 
(5) In case of non-stationary ambient vibration, some lacks or 
changes of frequency have caused in lower modes. Also, we 
recognized that structure’s frequency will be affected with not 
only near vehicle’s frequencies but also higher frequency mode 
of the structure. These results indicate that we should evaluate 
environmental effects beforehand for estimating structural 
dynamic characteristics precisely. 
 
Appendix A : Derivation of equations 
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where the columns of U  and V are orthogonal, and S  is a 
rectangular matrix. Right and left multiplication of TU and TV  
on Eq. (A-1) yields: 
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The next relations are obtained from Eq. (A-2):  
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The following relation can be written as   
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The next relation is obtained by expanding Eq.(A-4):    
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Appendix B: Relation between block companion form 
realization and AR model 
(1) Transformation of state equation to multidimensional 

ARMA model 
The multidimensional ARMA model can be obtained by 

block companion matrix from Eq.(11). ARMA model 
regarding block companion matrix expressed in Eq.(9) is to be  
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where, sRR ~1 are external force coefficients. 
As an approximation of multidimensional ARMA model in Eq. 
(B-1), model order is considered as greater than p  
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and the auto correlation of white noise )(le  with 0  mean 
value formulated as 
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where, mm×∈RΣ e . 
 
(2) Estimation of multidimensional AR model parameter 
by Yule-Walker equation 

Assuming )(ky as m multipoint measurement sampling 
signal. For a stationary time series, the covariance matrix of 
the time series is given from the definition by the next 
expression: 

[ ] [ ] )()()()()( sskkEkskE TT Λyyyy =−=+     (B-4) 

where, [ ]E is mathematical mean． 
Right multiplying Trk )( −y into Eq.(B-4) and taking 
mathematical mean, we can get covariance equation of 
observation signal:  

0ΛGΛGΛ =−++−+ )()1()( 1 prrr pL       (B-5) 

thus Yule –walker equation is obtained for 1=r ～q ． 
To increase the size of equations from unknown numbers, 
Eq.(B-5) is composed for pmq ×> and psr += ～

1−++ qps  where s  is starting point: 

[ ]

[ ])1()1()(
)2()12()()1(

)()1()2()1(
)1()()1()(

11

−+++++=

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

−++−++−+

+++++
−+++

−−− −

qpspsps
pqspspsps

qspsss
qspsss

pp

ΛΛΛ
ΛΛΛΛ

ΛΛΛΛ
ΛΛΛΛ

GGG

L

LL

MLMOMM

LL

LL

L
    

(B-6)                
The matrix representation of the above equation is 

21 TGT =                               (B-7) 

where )( pmm ××∈RG is ARMA model parameter and can be 
rewritten as 
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[ ]pGGGG −−−= L21           (B-8) 
where, )()(

1
qmpm ×××∈RT , )(

2
qmm ××∈RT , thusG is obtained 

by right multiplying T
1T  or 1

11 )( −TTT on Eq.(B-7) we will 

obtain: 

1
112 )( −= TTTTG                       (B-9)  

moreover,  the coefficient matrix can be found by applying 
the singular value decomposition. 
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