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In this research, vibration characteristics are estimated from the ambient vibration of highway
bridge by the block companion form realization theory. Two methods are stated herein such as
formulation of block companion system matrix; (i) directly from block Hankel matrix, (ii)
from ARMA model parameter G through Yule-Walker equation. These methods have applied
to a 152m long Langer bridge and its dynamic characteristics were estimated automatically
from multipoint measurement of ambient vibration. As the ambient vibration characteristics
affect the estimation accuracy, two different cases were taken into consideration and the

estimation accuracy was evaluated.
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1. Introduction

System identification by modal analysis” has brought the
opportunity to accurately estimate structural dynamic
characteristics (frequency, damping constant, and vibration
mode). In order to obtain bridge dynamic characteristics®® by
modal analysis method, ambient vibration is assumed as white
noise or external force with a spectrum structure of certain
characteristics. In this method, structural dynamic characteristics
is obtained from experimental data through theoretical transfer
function by curve fitting using non-linear least square method.
On the other hand, dynamic characteristics could be estimated
using AR or ARMA model? ~® from time series analysis
without consideration of a physical model.

In the recent years, computation of system matrix” ™™ by
realization theories become easy because calculation of large
matrix at high speed can be done with the help of high
performance personal computer. Authors proposed automated
estimation of bridge dynamic characteristics from ambient
vibration using block companion form realization method™.

Discretized state equation is transferred to block companion
state equation by observability matrix and ARMA model is
formulated by corresponding block companion form. However,
the block companion form state equation introduces a standard

realization theory that is formulated from the relation of block
Hankel matrix which is similar to Ibrahim time-domain
method™ . In stochastic realization theory, block Hankel
matrix is formed by covariance matrix, though in deterministic
realization theory, block Hankel matrix is formed by Markov
parameter. In addition, the relation between the block Hankel
matrix formulated by covariance matrix and the system matrix
by the block companion form has been included with the
Yule-Walker equation, from which classic multi-dimensional
ARMA model coefficient is obtained. In the future, as an
inverse problem of structural identification from measurement
data, ARMA model will be an important method * for the
modeling of existing structures.

This research achieves dynamic characteristics estimation
with ambient vibration of a highway bridge by the stochastic
block companion form realization theory. Two methods are
stated herein for formulation of block companion system
matrix; (i) directly from block Hankel matrix, (ii) from ARMA
model parameter G through Yule-Walker equation.

The methods have applied to an existing bridge for
automated estimation of dynamic characteristics. The 152 m
long Kabashima bridge, situated in Nagasaki city, was selected
as object bridge and its dynamic characteristics were estimated
from the multipoint measurement of ambient vibration. As the
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ambient vibration characteristics affect the estimation accuracy,
two different cases, such as stationary ambient vibration with
wind force and non-stationary ambient vibration intermitting
moving vehicles were taken into consideration for dynamic
characteristics estimation.

2. State space representation of equation of motion

2.1 State space representation of equation of motion
Bridge structures can be modeled by FEM and their
dynamic characteristics are expressed through n DOF system of
following equation of motion for external forces acting on r
nodes out of n nodes.
mZ(t) +cz(t) + kz(t) = df (t) D
where z(t)eR" and f(t) e R" are displacement and external
force vector. meR™, ceR™ and keR™" are mass, damping
and stiffness matrices for the structural system, respectively.
Moreover, d e R™" is the vector of input force when acting on
r nodes. General viscous damping is considered in this study.
For gradual change of f(z) within t, <z<t =t +T, in
this time interval f(z) is constant vector asf (k) :
f(r)=f(k) (t s7t<ty,) @
similarly, proceeding with discretization of displacement
z(t) and wvelocity z(t) into z(k) and z(k) . External force
p(k) € R?"and state variable x(k) € R?" can be represented as

w50 eo=g ®

y(k) e R™ is expressed asm point observation of structure in
terms of displacement z(k) and velocity z(k) and discretized
state equation is formulated from Eq. (1) as

x(k +1) = Ax(k) + Bf (k) (4-1)
y(k) = Cx(k) 4-2)
and system matrix, external force matrix of linear state equation

are
ar_ = [m ¢ d
[ o] o B=T 5] (3 @
0 m 0 m
where, AeR?™2" B eR¥™T,

Coefficient matrices for discretized state equation are

A= ex(tkﬂ._tk) - EKT

B=[eAla g B=(eAT ~1)AB ©)
'k

where AeR?™2" | BeR?™" and observation matrix
CeR™2" can be found from observation value y(t) and
extracted from the state variable x(t) .

2.2 Block companion form state equation
Observability matrix of discretized state Eq. (4) is

C
CA
I:’p = (7)

caPl

the system is observable for rank (P,)=2nand mxp=2n.
Next relationship can be formulated from the characteristics of
multi-dimensional observability (Appendix A):

CAP=-G,C-G, CA ——G,CAPT (8
where G, e R™™ is coefficient matrix. The system matrix

A is thus converted to generalized observable system matrix as
follows:

CA 0 I o - o c ©)]
CA? 0 0 I -0 | CA | .

PA=| =] : : - : : =AP,
CAP 7Gp 7Gp71 ’Gp—z v =Gy CAP?

then, discretized state variable in terms of observation matrix
P, can be:

Ppx(k) = X(k) (10)

Therefore, block companion form state equation will be:
X(k +1) = Ax(k) + Bf (k) (11-1)
y (k) =CX(k) (11-2)

where, force matrix and observation matrix are respectively

CB B,
- CAB :
B=P,B= , = . (12)
: B
. Ap_l
CAP-1B B

and

c=cp, =l 0 0]. (13)

2.3 Ambient vibration modeling and auto correlation
function of observation process

Ambient vibration is modeled by random vibration theory
for linear dynamic system including unknown external force
acting on structure. External force is assumed as stationary
white noise process w(k) e R" with zero mean value. The
covariance of w(k) can be expressed:

Se  (1=0)

0 (1%0) (14)

E[w(k +hw' (|)]={
where E[ ]is mathematical mean value andx,, e R™". The
mean value of external force and initial boundary condition are
to be zero. In this case the solution process x(k) is stationary
process with zero mean value and the covariance is as
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R (k) = Ex(iox()" | (15)

Covariance equation of solution process is formulated by
substituting Eq. (4-1) into Eq. (15) and using the relation of Eq.
(14). Fork — o ,R, (k) is R, and covariance of the solution
process is obtained as

R, =AR,A’ +BQB' (16)
where Q is as follows:;
Q=Ew(k)w(k)"] (7)

The auto correlation of solution process for stationary process is
the time invariant of x(I + k) and x(1) :

Ry (k) = Elx(1 + k)x(I)T] (18)
Next relation is formulated by substituting Eq. (4-1) into Eq.
(18) and using the Eq. (14), we can obtain:

Rx(K)=A R, (120) (19)

The covariance matrix R,, (k) of observation data is
expressed as follows according to the Eq. (4-2) and Eq. (19) :

CrR.CT 1=0
Ryy(k)—{ )

CAKIB  k>1 @0

where B=AR,C' .
3. Relation between Hankel matrix and block companion
system matrix

3.1 Decomposition of Hankel matrix
Defining (p+1)x(q+1) block Hankel matrix:

H p+1,q+1(k) = Pp+1Aqu+l (21)
C
where, CA Qui-[p AB - aB] @

Pp+1 = :
CAP
The matrix P, is called extended observability matrix
and the matrix Qg is called extended controllability matrix.

The minimum dimension of the state matrix is nxn for
n order system. In that case the rank of Hankel matrix isn .

3.2 Estimation of block companion system matrix A

The next equation is formulated from extended
observability matrix stated in Eq. (8)

CAS*; 0 1 0o - 0] ca (23)
S+ 0 0 1 0 s+l N
poastto| CAZ | : R R S

CASHP Gy, -Gpy -Gy, -+ —Gpjcastrt

right multiplying Q,, on both terms of Eq..(23) yields
PLASQ, = AP A%Q, (24)

Using the relationship of Hankel matrix written in Eq. (21):
H(s) = AH(s-1) (25)

for simplification, H, (s) is expressed as H(s) and detail
form of Eq. (25) will be:
A(s+1) oo o A(s+0Q) A(s) e

=A

A(s+q-1) ] (26)

A(s+p) - - A(s+p+0q) A(s+p=1) - - A(s+p+q-2)

(1) For obtaining block companion system matrix A

Block companion matrix A can be formulated from Eq.
(26) using least square method as below:

A=H(S)H(E-1)T (HGs-DH(s-1)T) 27)

(2) Obtaining G =|-G, -G,
A

If T,=H(s-1) and T,"™M@-DrW are the lowest
blocks of H(s) , then Eq. (26) would be similar as the
Yule-Walker Eqg. (B-6) of Appendix B and G can be found as

~G,|as elements of

G=T,(TT")*? (28)

A can be formed by G according to Eq. (9). In addition in the
both cases, A and G can be obtained using singular value
decomposition.

4. Dynamic characteristics estimation

4.1 Covariance matrix estimation using measured signal

To obtain Eq. (26), it is necessary to calculate the covariance
matrix of the measured signal. Measured signal is assumed to
have ergodicity characteristics and covariance matrix of
observation process was calculated according to the time
average. In case of m dimensional discrete measured signal,
covariance of observed signal y(k) is

A(r)_Nl_rNkz'lry(kH)yT(k) (ress+q) (29)

A(=r)=AT(r) (30)

4.2 Modal analysis of block companion matrix
(1) Frequency and damping constant estimation
For similar relation of A and A , eigenvalue and eigenvector
v of A can be obtained by eigenvalue analysis:
WTAY —eM =T
_ {u 0 } 31
0 p*
where 1%, =e*"v* and 1 =e™* are complex conjugate. A,
and 4," are the k™ order eigenvalues of motion equation
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stated in Eq. (1) and will be as

M=—oy+iog . A =-0y —img (32
For proportional damping system, real and imaginary part
represents modal damping and natural frequency as
Ok tha)k, Wyk = Wy 1—h2 (33)
The frequency and modal damping of the structural system are
obtained from the eigenvalue of A :

i = Hy

Hy + Hy

,Uk:_iln(ﬂkl_‘k) (34

1, _
[ —tan 1

for proportional damping system, k™ order natural frequency
@, and modal damping h, can be expressed by Eq. (35):

Wy :\'C()dkz-i-o'kz y hk :O'k/alk (35)

(2) Vibration mode estimation system
Eigen equation of matrix A for discretized state equation is
as follows:
(A-T¥=0 (36)
left multiplying of the observation matrix P, into Eq. (36) will
convert the related eigen equation of system matrix A :

-1 -1
(AP, —P, AP, )P ¥ =0
(A-T)P,¥ =(A-A)®=0 (37)

therefore, the eigenvector of A will be:

C (63 4 b 4

-1 ~
o C:A po| CYYTAY | A (38)

cast CY(PIAY)ST | | gpst

upper m rows of @ are the eigenvectors of system matrix A for
mode vectors corresponding m points observation matrix of
state space Eq. (4).
(3) Extraction of frequency, modal damping, and mode
shapes
a) Estimation of frequency and damping constant

The eigenvalues of discrete system of Eqg. (32) can be
rewritten as

2 = e %A (cos oy T +isinawyT 39
k d d

these eigenvalues are displayed on the complex plane by

r= e—hka)kT

0 =tanL oy T =tan L o T (40)

for small value of damping constant wg, = @y . Therefore,
frequency ., and modal damping hy,,, are desirable to be
calculated. The extraction range of the frequency and modal

damping will be as following:

_hmax a)maxT

e <r<1 0< 0 <tan L omeT (41)

b) Vibration mode estimation
The vibration modes can be derived from the eigenvector of
system matrix A using Eq. (38) for m point observation:

R Vir o Vim
Y= (42)
Ymi " ¥mm

Eigenvalue 4, is calculated by realization method, then
corresponding eigen mode can be obtained from that eigenvalue

Y, = (43)
Ymk

5. Automatic measurement with ambient vibration

5.1 Object bridge

A Langer bridge, situated in Nagasaki city, was selected as
object bridge and its dynamic characteristics were estimated
from the multipoint measurement of ambient vibration. Figure 1
shows the front view and Table 1 shows the properties of
Kabashima Bridge.

Fig.1 Kabashima bridge

Table 1 Properties of Kabashima bridge

Bridge Type Steel Langar Truss Bridge
Length (Center Span) 227 m (152 m)
Width 75m
Construction Year 1986
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AJD converter

Connector
block

(a) Vertical acceleration measurement sensors installation

3

(b) Torsional measurement sensors installation
Fig. 2 Measurement apparatus installation to the bridge

Table 2 Measurement apparatus

Type (Manufacturer)

Specicfication

A/D converter

DAQ Card-6062E
(National Instruments)

Analogue input: 16¢ch ,
12bit

Accelerometer

710 (TEAC)

Sensitivity: 300 (mv/m/s?)

Frequency response: 0.02-200Hz

Amplifier SA-611 (TEAC)

CF-19 (Panasonic)

Personal computer 0OS:Windows XP Pro

5.2 Experiment

The bridge’s ambient vibration measurement was
conducted with accelerometer. Five accelerometers were
installed on the bridge to obtain vertical acceleration
simultaneously as shown in Figure 2(a). Two accelerometers
were installed at the middle of bridge span for recording the
torsional vibration data as shown in Figure 2 (b). Table 2 shows
the measurement apparatus used during the experiment.
Measurement program was developed with LabVIEW 7.5
(National Instruments).

We conducted offline analysis to estimate the bridge’s
dynamic characteristics. 1200 consecutive time history data per
channel are hired to obtain one dynamic characteristic for 30
second according to data sampling frequency, which was
selected as 100Hz. By 50 time repetitions of the operation, we
could evaluate the bridge’s dynamic characteristics change
visually.

The indicator to evaluate dynamic characteristics is
controlled by characteristics of ambient vibration. The bridge is
surrounded by strong wind condition because it locates at the
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Fig. 3 Ambient vibration data (Case 1)
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Fig. 4 Ambient vibration data (Case2)

very top of the Nagasaki Peninsula. This means the ambient
vibration observed on the bridge is influenced by wind
conditions.

Naturally, by moving vehicles on the bridge, the bridge
vibration will be induced strongly. Ambient vibration by wind
load constantly induces low frequency vibration to the bridge,
where ambient vibration by moving vehicles induces relatively
high power 3 to 5 Hz frequency, which means the automobile’s
vibration characteristics. Accordingly, two cases were focused
in this paper. One is the ambient vibration data induced by
constant wind load, and the other is the ambient vibration
induced by moving vehicles. The former case was indicated in
Figure 3 () and (b) with its power spectrum density as recorded
vertical acceleration under the strong wind conditions in June,
2007. The latter case was indicated in Figure 4 (a) and (b) with
its power spectral density as recorded under the moving vehicles.
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The both data were recorded with the No.1 sensor location that
is shown in Figure 2 (a). The consecutive series of data were
used for estimating dynamic characteristics. By comparing each
power spectrum density of the Figure 3(b) and Figure 4(b), it is
recognized that 3 to 7 Hz frequencies have induced under
vehicles intermitting.

6. Automatic measurement for stationary vibration
(Case 1)

6.1 Extraction of eigenvalue

Eigenvalues from system matrix A were plotted in a
complex plane as shown in Figure 5. The maximum frequency
and modal damping restricted the extraction range for
eigenvalue. The complex eigenvalues extracted from this region
have considered for frequency and modal damping estimation.
In addition, vibration modes are estimated from the eigenvector
corresponding to the eigenvalues.

6.2 Comparison of the estimation method

In this study, two methods were taken into consideration.
The first method was stated in Eq. (26). In this case, dynamic
characteristics were estimated from the eigenvalue of
companion matrix in Eq. (27), which was directly formulated
from Hankel matrix. Second method was stated in Eq. (28). The
results from ambient vibration data were almost same for both
methods. Therefore, in this study, first method was employed
for dynamic characteristics estimation due to the simplicity of
calculation.

6.3 Estimation results (Case 1)

(1) Estimation of frequency

The dynamic characteristics were estimated based on the
ambient vibration data, which was measured on a
comparatively windy day. The data sampling frequency of
acquiring ambient vibration was set as 100 Hz. 1200 consective
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Fig.7 Estimation of modal damping

Table 3 Estimation accuracy of dynamic characteristics

Frequency (Hz) Modal damping

Mode

order | Mean [ Standard | Coefficientof | Mean | Standard | Coefficient of
value | deviation | variation (%) | value | deviation | variation (%)
1 0.840 0.060 7.143 0.043 0.044 102.326
2nd 1.143 0.115 10.061 0.014 0.023 164.286
34 1.946 0.061 3.135 0.031 0.023 74.194
4t 2416 0.113 4.677 0.029 0.026 89.655
5t 2.948 0.527 17.877 0.034 0.026 76.471

data were processed for each time estimation and the process
was continued for 50 times repeatedly as shown in Figure 6.
The figure shows that frequency up to 5" mode can be
estimated stably. According to the ambient vibration
measurement, shown in Figure 3, continuous estimation is
possible for stationary ambient vibration. Moreover estimated
frequencies between 4Hz to 5Hz also gathered in order, but we
can see that those estimation accuracies are comparatively lower
than up to 5th mode.
(2) Estimation of modal damping

Figure 7 shows the estimated values of modal damping.
Based on the experimental result it can be seen that the modal
damping estimation can be realized for well-excited vibration
modes. However deviation of estimated modal damping is
larger than the deviation in frequency estimation. So this result
would be compared with other method. Figure 7 indicates that
the modal damping is within 0.05, and as a general evaluation
criterion, it is possible to estimate modal damping.
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Consideration is added for the mean value and the coefficient of
variation of the modal damping corresponding to frequency.
(3) Estimation accuracy of dynamic characteristics

Table 3 shows mean value, standard deviation and
coefficient of variation regarding the estimated frequency and
modal damping for 50 repeated times. Up to now, the statistical
analysis for clearly estimated frequency and modal damping is
not targeted, as the measurement for each time and their
processing is time consuming. To forecast the deterioration of
the bridge caused by structural damage or global aging from the
change in the vibration characteristics, it is necessary to know
their change statistically for control of maintenance. For this
reason automated dynamic characteristics estimation and
processing of large number of observations data are thought to
be an important.

Coefficients of variation of frequencies up to 4™ mode were
within 10%. This indicates that high accuracy estimation of
frequencies has realized. The mean value of 3 mode frequency
is 1.946Hz and coefficient of variation is 3.13% i.e. estimated
value is within the limit of 1.946 +0.061 Hz. Coefficient of
variation of frequency for 5" mode is within 20%, which means
estimation accuracy is a little bit lower.

Estimated values for modal damping were between 0.014
~0.043 and their coefficient of variation is among 74~164%. It
can be thought that comparatively steady estimation has realized
with the accuracy of about 100% for the coefficient of variation.

(4) Estimation of vibration mode

Figure 8 shows the estimated vibration mode shapes.
According to the realization theories, we can obtain the higher
order mode shapes. But actually, it is thought that more than the
five vibration mode shapes could not be estimated clearly
because those are dependent on the number and location of
sensors. The obtained vibration mode shapes are the average of
50 times estimation and the maximum value of each mode
shape set as one. The five estimated mode shapes were similar
in shape of the typical Langer truss bridge except 4" mode
shape. The 2™ mode shape shows typical arch effect and it
becomes symmetric mode shape. 2™ and 4™ mode shapes are
same in shape. This is because of the omission of torsional
mode by placing the accelerometer along the bridge length at
the time of experiment, and consequently it was not able to
detect torsional mode. Figure 9 shows the vibration phase for
the torsional measurement. This was measured by placing
accelerometer along the width bound of bridge at the middle of
bridge span as shown in Figure 2(b). Therefore it can be said
that 4™ one is torsional mode shape.

Thus, a multi-dimensional AR model and block companion
form realization are able to observe the vibration mode shapes
easily by the multipoint simultaneous observation compare to
the modal analysis method.

7. Automatic measurement for non-stationary ambient
vibration (Case 2)

Next, we deal with traffic load, which was induced bridge
vibration case (Case 2). Acceleration data recorded under the
traffic flow is shown in Figure 4(a). The figure shows some
peaks related moving vehicles. As shown in Figure 4(b),
according to the automobile’s natural frequency of 3 to 5Hz, the
bridge vibration is induced with not only near the automobile’s
natural frequency modes, but also the higher modes (5 to 7Hz).
From this standpoint, under the consecutive measurement,
estimation results may scatter according to intermittent vehicles.

7.1 Estimation of frequency

50 times frequency estimation results were shown in Figure
10. Comparing the result with Figure 6, which is wind load
induced ambient vibration, we can see that there are some lacks
or changes in frequency estimation in lower frequency modes
from 1% to 5". On the other hand, we can see that relatively
higher modes, such asaround 4, 5, 6, and 7Hz, have induced.
By repeating these measurements and by using stable
estimation results, reliable natural frequency estimation will be
realized. Thus, intermitting vehicles would affect on estimation
results’ changes in frequency especially in higher modes. It
should be observed stable ambient vibration to obtain steady
estimation results.
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Table. 4 Estimation accuracy of dynamic characteristics

Mode Frequency (Hz) Modal damping
order | Mean | Standard | Coefficientof [ Mean | Standard | Coefficient of
value | deviation variation (%) value deviation | variation (%)
1 0.726 0.340 46.832 0.191 0.296 154.974
2nd 1.145 0.280 24.454 0.022 0.033 150.000
34 1.785 0.346 19.384 0.016 0.028 175.000
40 2.305 0.267 11.584 0.026 0.036 138.462
st 2.765 0.435 15.732 0.015 0.027 180.000

Fig. 12 Estimation of vibration mode shapes

7.2 Estimation of modal damping

Estimation process of modal damping is shown in Figure
11. From the estimation results, we can see the 1% mode’s
modal damping is relatively or extremely big, whereas the rest
are estimated small. This means that dynamic characteristics
have not been estimated stably, the modal damping, which is
very sensitive for estimating the dynamic characteristics,
remains unstable. To evaluate this phenomenon, statistical

operation for estimation results of frequency and modal
damping were performed.

7.3 Estimation accuracy of dynamic characteristics

Statistical operation results for estimating frequency and
modal damping are shown in Table 4. As for the frequency
estimation, the result of coefficient of variation changes from 11
to 46 %. It is relatively higher number compared with Casel,
especially in 1% mode of 46.8%. This means that there exist
errors for estimating lower frequency mode in this bridge under
the inconstant vehicles intermitting. As for 4™ and 5" mode,
each coefficient of variation is relatively small and realized good
estimation.

As for the estimation of modal damping, the result of 1%
mode shows 0.191 of mean value and 155% of coefficient of
variation. The mean value overrate the actual phenomenon and
also the coefficient of variation remained high. As shown above,
same with the case for frequency estimation, the system could
not estimate lower frequency mode. We found that the
coefficient of variation shows big value in Case 2 compared to
Case 1 for estimated modal damping.

Thus, it is important to evaluate the characteristics of
ambient vibration beforehand to realize automatic bridge
vibration characteristics estimation.

7.4 Estimation of vibration mode

Figure 12 shows estimated vibration mode shapes, which is
mean value of consecutive 50 time repetition. As shown in this
figure, same as Case 1, good estimations were realized. The
reason why the 2™ and 4™ mode shapes are same, same with
Figure 8, the 4™ mode shape represents torsional vibration mode
shape.

8. Conclusions

In this paper, automatic estimation method of dynamic
characteristics proposed by the stochastic block companion
form realization with ambient vibration. The summary of the
paper is as follows.

(1) Formulation of block companion system matrix from block
Hankel matrix, and Yule-Walker equation were indicated and
dynamic characteristics estimation-equations were derived for
simultaneous multipoint ambient vibration measurement of the
bridge.

(2 This method was applied to the ambient vibration
measurement for the existing bridge and the same estimation
results were found for stochastic block companion form
realization method and ARMA model through Yule- Walker
equation. In addition, stochastic block companion form
realization method can be used for dynamic characteristics
estimation due to its simplicity of programming.
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(3) Stochastic block companion form realization method was
applied to obtain the dynamic characteristics of existing bridge
for multipoint ambient vibration measurement. Dynamic
characteristics were estimated for the stationary state of ambient
vibration. Especially, automated estimation of vibration mode is
the efficiency of this method.

(4) Dynamic characteristics were estimated for stationary state
of ambient vibration caused by wind force and non-stationary
ambient vibration by moving vehicles. Stable and continuous
estimation of dynamic characteristics was possible for stationary
ambient vibration.

(5) In case of non-stationary ambient vibration, some lacks or
changes of frequency have caused in lower modes. Also, we
recognized that structure’s frequency will be affected with not
only near vehicle’s frequencies but also higher frequency mode
of the structure. These results indicate that we should evaluate
environmental effects beforehand for estimating structural
dynamic characteristics precisely.

Appendix A : Derivation of equations
CAP=-G,C~~G,CAP2-G,CAP!
Singular value decomposition of Hankel matrix will be as:

{SO” g} =U,S,V, (A1)

where the columnsof U and V are orthogonal,and S isa
rectangular matrix. Right and left multiplication of UT andvT
on Eg. (A-1) yields: .

U
UT H p+1,q+1(O)VT = |:Ur0]-r :|Pp+1Qq+1[Vn VO]

T T

_ u n Pp+1Q q+an u n P p+1Q q+1V0 _ {S n 0:| (A-Z)

= - - =
Uo PpiQguVn Ug PpuQguaVo 00

V T
H p+1,q+1(0) =usv' = [Un

The next relations are obtained from Eq. (A-2):
Pp+1Qq+1Vn =0 (A'3)

The following relation can be written as

T T
Up PpiaQquVo=0 Ug

Up' Ppi1 =0 (A-4)

u 0 p+1T J (A'5)

where UOST (s=1--p+De R(mp+m-n)xm
The next relation is obtained by expanding Eq.(A-4):

T T
U =V

U Ch o oo +Ug,"CAP T+ Uy, CAP =0 (A-6)

left multiplying general inverse matrix (Ugp.y' )™ 0f Ugp,y"
on Eqg. (A-6) and introducing coefficient

Gy =(Ugps1 )" Ugprsa’ (1=1p)
and the following relation is introduced

CAP =-G,C-+~G,CAP 2 -G,CAP. (A7)

Appendix B: Relation between block companion form
realization and AR model
(1) Transformation of state equation to multidimensional
ARMA model
The multidimensional ARMA model can be obtained by
block companion matrix from Eq.(11). ARMA model
regarding block companion matrix expressed in Eq.(9) is to be

y(k+p)=Gyy(k+(p-1)-G,y(k+(p-2))—-~G,y(K) (g.1)
=R, f(k+p-D)+R,f(k+p-2)+---- +R,f(k)

where, R;~R; are external force coefficients.
As an approximation of multidimensional ARMA model in Eq.
(B-1), model order is considered as greater than P

p
Y+ Gyk-1)=e(k) (B-2)

and the auto correlation of white noise e(I) with 0 mean
value formulated as

Ele(k+1)e™ (I)]= {20 E: zg; (B-3)

where, X, e R™m,

(2) Estimation of multidimensional AR model parameter
by Yule-Walker equation

Assuming Y (K) as m multipoint measurement sampling
signal. For a stationary time series, the covariance matrix of
the time series is given from the definition by the next
expression:

Ely(k+s)y™ (k)= E[y(k)y" (k—s)|=A(s)  (B4)

where, E[ ]is mathematical mean.

Right multiplying y(k —r)" into Eq.(B-4) and taking
mathematical mean, we can get covariance equation of
observation signal:

A(r)+GA(r-)+---+G,A(r-p)=0 (B-5)

thus Yule —walker equation is obtained forr =1 ~q .

To increase the size of equations from unknown numbers,
Eq.(B-5) is composed for g>mxpand r=s+p ~
s+ p+g-1 where S isstarting point:

A(S) A(s+1) - A(s+p) A(s+q-1)
[—Gp—Gp,lm—Gl A(s:+1) A(s:+2) A(s+:p+1) A(s:+q)
A(s+p-1) A(s+p) - A(s+2p-1) -+ A(S+q+p-2)
=[A(s+p) A(s+p+l) - A(s+p+q-D)]
(B-6)

The matrix representation of the above equation is
GT, =T, (B-7)

where G e R™(m<p) js ARMA model parameter and can be
rewritten as
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G=|-G6, -G, -G, | (B-9)
where, T, e RmP)xma) T, ¢ Rm(ma)  thus G is obtained

by right multiplying T, or (T, T])*on Eq.(B-7) we will
obtain:
G=T,(T,T,)" (B9

moreover, the coefficient matrix can be found by applying
the singular value decomposition.
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