VOF 法を用いた降積雪過程の有限要素解析

VOF-based finite element analysis for deposition and deformation of snow

小川徹*, 阿部和久**, 紅露一寬*** Toru Ogawa, Kazuhisa Abe, Kazuhiro Koro

*新潟大学大学院 環境共生科学専攻(〒 950-2181 新潟市西区五十嵐二の町 8050 番地)
 **工博,新潟大学准教授,工学部建設学科(〒 950-2181 新潟市西区五十嵐二の町 8050 番地)
 ***博(工),新潟大学准教授,大学院自然科学研究科(〒 950-2181 新潟市西区五十嵐二の町 8050 番地)

The paper attempts to enhance the VOF-based finite element method for snow deformation problem by taking into account the deposition process. The variation of snow shape due to the deposition is modeled by involving the supply from snowfall in the advection equation of the VOF function. The snowfall process is described by simplified advection and diffusion models. The developed method is verified through a comparison with a semianalytical solution for a one-dimensional deposition problem. Besides, the simulation of Nakamura's experiment for snowpack with an embedded beam is achieved. Based on these analyses the significance of snow deposition process and deformation hardening in the mechanical behavior is discussed.

Key Words: snowfall, deposition, FEM, VOF method キーワード:降雪過程,堆積過程,有限要素法, VOF法

1. はじめに

積雪中に構造物が存在する場合,積雪の沈降が妨げ られるため,その周辺では雪の変形速度の空間分布に 差異を生ずる.その結果,構造物には上方の積雪深の みならず,形状にも依存した荷重が作用することとな る.この積雪の変形に起因して生じる力を積雪の沈降 荷重という.沈降荷重は積雪の自重を大幅に上回る程 の規模となることがあり,構造設計上,雪荷重の適切 な評価が非常に重要となる.そのため数値解法を用い た積雪の変形解析が,当該目的において有効な手段の 1 つとなり得る.

Nakamura¹⁾は、箱の中に正方形断面のはりを設置し そこに新雪を充填して、はりに作用する沈降荷重の計 測実験を行った.また、これに合わせて有限要素法によ る沈降荷重の再現解析を試み、実験結果との比較を行っ ている.なおこの解析では積雪変形の記述にLagrange 記法が使用されている.この場合、大変形を伴う積雪 の長時間解析では要素のゆがみが生ずるため、解析精 度の低下や、複雑な自由境界変動を伴う際には解析過 程の破綻等が懸念される.

この点に鑑み,阿部・紅露は文献 2) において有限要 素法に基づいた VOF 法³⁾による積雪変形解析手法を構 築し,Nakamura の実験の再現解析を行った.当該手 法では,要素内における積雪占有率を表す VOF 関数 ψ を要素毎に定義することで積雪領域を表し, ψ に関 する移流方程式を解き進めることによって積雪面を捕 捉して行く.Euler 記法に基づくこの手法は積雪領域と 無関係に要素分割ができ,雪塊どうしの融合,分離な ど複雑な積雪自由境界変動解析が可能となる. さらに ψ の補間に CIP 法⁴⁾を併用することで,移流解析にお ける精度維持を図っている.しかし,Nakamura と阿 部らのいずれの解析結果も,時間経過に伴う沈降荷重 値の減少傾向が大きく,実験結果との間に有意な差が 認められた.

そこで阿部・紅露5)は、篠島6)の長時間載荷実験に見 られる雪の硬化現象に着目し、実験結果からそのひず み依存性を見出した. さらに、阿部らはその硬化現象 をモデル化し, 文献 2) に構成した手法に実装して当 該現象を反映させた. その下ではりに作用する沈降荷 重を再度計算しており,硬化モデルの導入により既往 の解析結果に見られた沈降荷重の減少傾向が低減され、 Nakamura の実験結果に近い数値が得られることを示 した.しかし、文献5)の解析で得られた沈降荷重の時 刻歴は、解析初期段階で急激に上昇し、その後徐々に減 少するというものであり、Nakamuraの実験結果に比べ てその初期段階に未だ大きな差異が認められた. 徐々に 新雪を充填しつつ沈降荷重を計測していく Nakamura の実験条件に対して、文献5)の解析では予めはりを無 変形の積雪内に埋設した状態から圧密変形解析を開始 している.上述の初期挙動の差異は、この力学条件の 違いに因る可能性が高い.

積雪は時間の経過と共に圧密変形を受けるが,上記 の様な雪の充填過程や降雪供給を伴う場合,変形と同 時に積雪堆積を受ける.積雪の堆積に伴いその自重は 変化し,ひいては変形過程における荷重や密度および 積雪形状に大きな影響を及ぼすであろうことは想像に 難くない.しかしこれまでに行われている様々な雪の 解析では、文献1),2),5)のように圧密変形はモデル 化しているが、降積雪過程を考慮していないものや、逆 に文献7)のように降雪による積雪形状の成長は再現で きるが、圧密変形は考慮していないものが一般的であ り、積雪成長を伴う変形過程を対象とした解析手法は 未だ構築されていない.

そこで本研究では、降雪下での積雪成長過程のモデ ル化,およびそれによる Nakamura の実験における沈 降荷重発現過程の再現・解明を主な目的とし、有限要素 法に基づく2次元降積雪過程解析手法を構築する. そ の際に、降雪の供給過程は簡易モデルで表し、それを 文献2),5)の積雪変形解析手法に実装することで積雪 の堆積・圧密変形の再現を試みる. なお降雪過程に関 して、 文献 7), 8) では Navier-Stokes 方程式に基づく 風の解析が行われている.これに対し、本研究の主目 的は降雪供給が与えられた下での積雪成長過程の再現 にあるため、計算時間短縮の目的から降雪過程の表現 には流体解析を行わず、簡易な移流拡散モデルを用い る. その下で、1次元的な降積雪場の解析を通し、本手 法の妥当性を検証する、さらに、Nakamura の実験の 再現解析を通し、実験で得られたはりの沈降荷重の発 生機構について考察する.

2. 積雪の変形解析手法

ここでは,文献 2) および文献 5) において構築され た積雪変形解析手法について,その概略を述べる.

2.1 積雪の力学特性

積雪は一般に粘弾性体的性質を有するが,長時間に 亘る変形過程においては粘性変形が支配的となる.そ のため,本研究では積雪を粘性体として扱う. 篠島は, 文献 6)において新潟県塩沢の積雪を対象に,温度一定 の条件下で一軸引張・圧縮および捩り実験を実施した. 文献 6)によると,積雪の粘性係数は雪温θと密度ρに 依存し,次式のように与えられる.

$$\eta_i = \tilde{\eta}_{0i} e^{\kappa |\theta|} \cdot e^{\zeta \rho} \tag{1}$$

ここで、下添え字の*i*は*t*(引張),*c*(圧縮),*s*(せん断) のいずれかの条件を表し、 η_i は各変形下での粘性係数 である.また、 $\tilde{\eta}_{0i}, \kappa, \zeta$ は積雪固有の定数であり、積雪 により異なる.本研究では雪温 θ が一定の場合を対象 とし、式(1)を以下のように書き換える.

$$\eta_i = \eta_{0i} e^{\zeta \rho} \tag{2}$$

ここで $\eta_{0i} = \tilde{\eta}_{0i} e^{\kappa|\theta|}$ である.

また,積雪の一軸粘性変形下におけるポアソン比*ν* は,引張時に0.5(等体積変形),圧縮時に0となること が知られている⁶⁾.以上の性質を反映させた一般の応 カ状態下における積雪の力学モデルは、等方性および 温度一定の仮定の下、次式により記述される.

$$\begin{aligned} \boldsymbol{\sigma} &= 2\eta_G \mathbf{D} + p\mathbf{I} \\ \operatorname{tr} \mathbf{D} &= 0 \\ \boldsymbol{\sigma} &= 2\eta_G \mathbf{D} \quad (p \le 0), \end{aligned}$$
(3)

$$_{G} = \eta_{0} e^{\zeta \rho} \tag{4}$$

ここで、 σ は応力、 $p = tr \sigma/3$ は圧力 (引張を正)、**I**は 恒等テンソル、 η_G はせん断粘性係数、 η_0 は定数であ る.また、**D**はひずみ速度であり次式で与えられる.

$$\mathbf{D} = \frac{1}{2} (\nabla \otimes \mathbf{v} + \mathbf{v} \otimes \nabla) \tag{5}$$

なお, v は積雪の変位速度である.

n

2.2 長時間変形時に生ずる硬化現象⁵⁾

篠島は文献 6) において,短時間載荷 (30分) と長時 間載荷 (50時間)の実験をそれぞれ行い,短時間載荷実 験の結果に基づいて式 (1) に示されるような積雪の力 学モデルを構築している.

一方,長時間載荷実験において,引張・圧縮の両変 形下での粘性係数が時間の経過と共に増大するという 結果が得られている.これは密度一定(引張変形時)か つ温度一定の条件下においても積雪の粘性係数が増大 し得ることを意味する.この結果は式(1)の不備を示 唆しており,積雪は密度や雪温以外の影響により硬化 し得るということが見出されている.

そこで阿部らは文献 5) において、この硬化現象によ る影響を抽出し、圧縮載荷ではひずみと以下に示す硬 化係数との関係が概ね比例関係にあり、引張載荷では、 硬化係数がひずみの二乗に概ね比例するということを 明らかにした.

そのひずみ依存性を反映させるために,式(4)を修 正した次の関係式が提案されている.

$$\eta_G = \eta_0 (1+f) e^{\zeta \rho} \tag{6}$$

$$f = \int_0^t a(p,\bar{e})\dot{\bar{e}}\,dt \tag{7}$$

$$a(p,\bar{e}) = \begin{cases} 2a_t\bar{e} & (p>0)\\ \frac{3}{2}a_c & (p\leq0) \end{cases}$$
(8)

ここで, f は上述のひずみ依存性を表す係数 (硬化係数), \bar{e} は次式で与えられる相当ひずみである.また,以降において t は時間を意味する.

$$\bar{e} = \int_0^t \sqrt{\frac{2}{3}} \dot{\mathbf{e}} : \dot{\mathbf{e}} \, dt \tag{9}$$

なお, $\dot{\mathbf{e}}$ はひずみ速度の偏差成分であり, $\dot{\mathbf{e}} = \mathbf{D} - \frac{1}{3}(\text{tr}\mathbf{D})\mathbf{I}$ で与えられる. さらに, 式(8)において a_t, a_c は一軸引張・圧縮時の硬化特性を定めるパラメータである.

ひずみの主軸が変化しない場合,ひずみ速度の時間 積分は一軸載荷における対数ひずみを与えることとな る.なお、常に引張載荷状態にある場合は、 $\nu = 0.5$ より、一軸引張変形下での硬化係数 f_t は次式のように 表すことができ、軸ひずみ ε の 2 乗に比例する結果を 得る.

$$f_t = \int_0^t 2a_t \bar{e}\dot{\bar{e}} dt$$
$$= a_t \bar{e}^2 = a_t \varepsilon^2$$
(10)

一方,常に圧縮載荷状態にある場合, $\nu = 0$ となり, 3 $\bar{e}/2$ は載荷軸方向の対数ひずみの絶対値を与える.すると式(6),(7),(8)より,一軸圧縮変形下での硬化係数 f_c は次式のように表すことができ,軸ひずみに比例する結果を得る.

$$f_c = \int_0^t \frac{3}{2} a_c \dot{\bar{e}} dt$$
$$= \frac{3}{2} a_c \bar{\bar{e}} = a_c |\varepsilon|$$
(11)

2.3 有限要素方程式²⁾

上で述べたような積雪の力学特性を反映させて有限 要素方程式の定式化を行う.積雪は圧縮変形時 ($p \le 0$) には圧縮性を示し,引張変形時 (p > 0)には等体積変 形するという性質を持つため,圧力pの符号によらな い解析アルゴリズムの構成,および求解方程式の解法 の安定化を図る目的から,積雪の変位速度 \mathbf{v} と圧力pを未知量としたペナルティ混合法を採用する.このと き,重みつき残差式より部分積分を経て最終的に次式 を得る.

$$\int_{\Omega} \frac{2\eta_{G}}{\eta_{0}} \tilde{\mathbf{D}} : \mathbf{D} \, d\Omega + \int_{\Omega} \frac{(p)_{+}}{\eta_{0}} \mathrm{tr} \tilde{\mathbf{D}} \, d\Omega$$
$$= \int_{\Gamma_{t}} \frac{1}{\eta_{0}} \mathbf{w} \cdot \bar{\mathbf{t}} \, d\Gamma + \int_{\Omega} \frac{1}{\eta_{0}} \mathbf{w} \cdot \mathbf{X} \, d\Omega \quad (12)$$
$$+ \int_{\Omega} w_{p} (\eta_{0} \mathrm{tr} \mathbf{D} - \frac{p}{\gamma}) \, d\Omega$$

ここで、 Ω は解析領域、 Γ_t は表面力 $\overline{\mathbf{t}}$ が規定されてい る境界、 \mathbf{X} は物体力、 \mathbf{w}, w_p は重み関数、 $\tilde{\mathbf{D}} = \frac{1}{2} (\mathbf{w} \otimes$ $\nabla + \nabla \otimes \mathbf{w}), (p)_+ = p(p > 0), (p)_+ = 0(p \le 0),$ $\gamma = G(p > 0), \gamma = 2\eta_G/3\eta_0 (p \le 0)$ であり、G は等体 積変形時に課するペナルティ係数である.なお、以降 に示す解析では $G = \eta_G/\eta_0 \times 10^8$ と設定した.

式 (12) の離散化に際し,変位速度 \mathbf{v} および \mathbf{w} には 2 次元 4 節点一次要素を用い, 圧力 p および w_p には要素内で一定値を取る一定要素近似を用いる. なお,解 析では平面ひずみ場を対象とする.

2.4 VOF 法による積雪境界の捕捉

本研究では、積雪の変形挙動の解析に VOF 法³⁾を用いる. 有限要素分割された解析領域において、各要素

図-1 降雪濃度 c の分布

内における積雪占有率を表す VOF 関数 $\psi(0 \le \psi \le 1)$ を定義する.積雪領域の変形は ψ の移流によって記述 され,各計算セルの ψ の値を移流方程式にしたがって 更新して行く.なお式 (12)の離散化は,解析領域全体 で展開し,要素毎に求めた係数行列に各要素の ψ を乗 じることで求解方程式を構成する.

ψ が満たす移流方程式は次式で表され、この式を解 き進めることによって界面を捕捉する.

$$\frac{\partial \psi}{\partial t} + \mathbf{v} \cdot \nabla \psi = 0$$
 (13)

なお VOF 関数の補間に関しては、 ψ の発展過程を高精 度かつ安定に解析する目的から CIP 法⁴⁾を用いる.し かし、高精度の解法を用いても数値拡散の発生を完全 に防ぐことは不可能であり、解析を進めていくうちに ψ の移流が適切に行われなくなる恐れがある.そこで 本手法では各時間ステップにおいて、 $\psi \approx 0$ (負の場合 を含む)となった要素は $\psi = 0$, $\psi > 1$ となった要素は $\psi = 1$ に修正する.また 0.9 < $\psi < 1$ でありながら積 雪面を有していない要素($\psi = 1$ となる前に積雪面が 他要素に移ってしまった場合)に関してはその要素の $\psi を 1$ にするという処理を行っている.

3. 降積雪過程のモデル化

次節以降の解析例では、無風状態下での降積雪問題 を対象とする.ただし、本節で述べる降雪の簡易モデ ルは、一定方向に吹く一様な風の影響を考慮して構成 されている.

3.1 降雪濃度

降雪は、風による空気の乱れなどの影響により、粒 子単位で揺らぎを持ちながら落下していく.そのため、 降雪が構造物の下に回りこむこともある.このような 降雪の運動の厳密な再現には、空気の流れを解析し、降 雪の移流拡散問題を解き進める必要がある.しかし、本 研究の主目的は、積雪の堆積過程の再現にあり、その ためここでは降雪過程を簡易モデルで表現することで 計算時間の短縮を図ることとする.本研究では降雪過

図−2 降雪の移流モデル

図-3 降雪の拡散モデル

程のうち,落下を移流,揺らぎを拡散とした2つの過 程に分けて以下に示すような簡易モデルで表現する.

図-1 のように解析領域を正方形有限要素で分割する 場合を考える.その下で、ある要素 (i, j) における降雪 濃度 $c_{i,j}$ を次式で定義する.

$$\rho_{i,j} = c_{i,j}\bar{\rho} \tag{14}$$

ここで、 $\rho_{i,j}$ は要素 (i,j) における降雪の質量密度、 $\bar{\rho}$ は障害物の無い無限空間における降雪の質量密度であ る.全く障害物の無い領域において $c_{i,j}$ は1、逆に全く 降雪の無い領域(構造物や積雪で完全に占められてい る要素も含む)では0、構造物や積雪の下方の様に降雪 強度が小さくなるような領域では $0 < c_{i,j} < 1$ となる.

3.2 降雪の簡易移流拡散モデル

解析領域における降雪濃度分布の具体的設定手順に ついて述べる.まず降雪の落下に相当する移流モデル を図-2 に示す.一様な風の下,図のように $\tan \theta = a$ の方向に雪が降っているものとする.ある要素 (i,j)の降雪濃度を $c_{i,j}$ とした場合,下方に位置する 2 要素 (i-1, j-1)(i-1, j) に対して濃度を $ac_{i,j}, (1-a)c_{i,j}$ で分配するものとする.なお図中の Q は濃度の重心移 動距離であり,降雪の鉛直方向移動距離を l とした場 合 Q = la で与えられる.

次に揺らぎに相当する拡散モデルを図-3に示す. 拡散 の処理は同一段の要素間において行う. ある要素 (*i*, *j*)

図-4 降雪の移流拡散モデル

の両隣の2要素 (*i*,*j*-1),(*i*,*j*+1) に対して降雪濃度を それぞれ *bc*_{*i*,*j*} で分配するようなモデルとする. なお*b* は拡散方程式に基づいて決定されるパラメータであり, 詳しくは**3.5** で述べる.

降雪は拡散しながら下方へ落下するため、上記の移 流過程と拡散過程とを組み合わせる. 今,図-4(a)のよ うに*i*段における要素 (*i*,*j*)を考える. この場合、要 素 (*i*,*j*)から下方の*i*-1段における3要素 (*i*-1,*j*-1),(*i*-1,*j*),(*i*-1,*j*+1)に対して降雪の供給がなされ、 濃度はそれぞれ $\alpha c_{i,j}$, $\{1 - (\alpha + \beta)\}c_{i,j}$, $\beta c_{i,j}$ と分配さ れる. なお、 $\alpha = a + b - 3ab$, $\beta = b(1 - a)$ である.

この操作をi段の各要素について実施し,i-1段の 要素における降雪濃度を求める.さらに、同様の操作 を順次下段要素に対して行うことで、領域全体の降雪 濃度分布を作成する.なお、領域内に構造物や積雪な どの障害物が存在する場合、これらの要素ではc = 0となるため、構造物下方への降雪供給量は何も存在し ない領域に比べて小さくなる.また、積雪の成長およ び圧密変形に伴い積雪領域は変化するため、各要素の 降雪濃度も変化する.本解析では積雪の成長速度、時 間増分などに応じて適宜数ステップ毎に降雪濃度分布 を更新する.

3.3 積雪の成長解析

降雪が雪に付着することで積雪面は成長する.また 降雪は風の影響および拡散により鉛直な面に付着する こともある.さらに,降雪が供給される積雪面は必ず しも水平とは限らず,その形状に応じて積雪は堆積し ていく.そこで本研究では,前節に示した降雪過程の 簡易モデルに基づいて積雪面の様々な向きに対する積 雪成長過程のモデル化を行った.以下にその具体的計 算手順を示す.

まず,降雪粒子の鉛直下方移動速度成分をVとすると,水平な単位面積を単位時間当りに通過する降雪質量 m_sは,降雪の質量密度 ρを用い次式で表される.

$$m_s = \bar{\rho}V \tag{15}$$

一方,水平面での積雪堆積速度を Uとすると,積雪

の初期密度 ρ0 を用いて次式が成り立つ.

$$m_s = \rho_0 U \tag{16}$$

なお、本簡易モデル下では積雪面近傍における雪粒子の跳躍、浮遊などは考慮しないものとする.

式 (15),(16) から次式を得る.

$$\bar{\rho}V = \rho_0 U \tag{17}$$

ここで ρ_0 , *U*, *V* が事前に与えられていれば,式(17) より $\bar{\rho}$ を決定することができる.

図-4(b) に示すように、3 要素 (i, j-1), (i, j), (i, j+1)における降雪濃度をそれぞれ $c_{i,j-1}, c_{i,j}, c_{i,j+1}$ で与える と、要素 (i-1, j) へは (i, j-1), (i, j), (i, j+1) の3 要 素から降雪が供給される. 各要素から単位時間当りに 供給される降雪質量はそれぞれ次式で与えられる.

$$\begin{cases}
\beta \rho_{i,j-1}V, \\
\{1 - (\alpha + \beta)\}\rho_{i,j}V, \\
\alpha \rho_{i,j+1}V
\end{cases}$$
(18)

ただし,式(18)は単位体積当りで表している.また, 図-4(b)に示すように(i, j - 1)から(i - 1, j)に移動 して来る降雪粒子の移動速度ベクトルを V_l ,同様に(i, j), (i, j + 1)からの移動速度ベクトルを V_d, V_r と し,それぞれ鉛直下方成分がVで与えられるものとし て簡易化すると,各ベクトルの成分は $V_l = (V, -V),$ $V_d = (0, -V), V_r = (-V, -V)$ で与えられる.

また、各ベクトルに平行な単位ベクトルをそれぞ れ $\mathbf{s}_l, \mathbf{s}_d, \mathbf{s}_r$ とすると、 $\mathbf{V}_l = \sqrt{2}V\mathbf{s}_l, \ \mathbf{V}_d = V\mathbf{s}_d,$ $\mathbf{V}_r = \sqrt{2}V\mathbf{s}_r$ となる.すると要素 (i - 1, j) におい ては、 $\mathbf{s}_l, \mathbf{s}_d, \mathbf{s}_r$ の3つの方向に、式(18) で与えられる 輸送量の雪が運動していると解釈できる.

次に,要素 (i-1,j) に積雪面が存在しており,その 外向き法線ベクトルが n で与えられているものとする. このとき,当該の単位積雪面に単位時間当りに供給さ れる降雪質量 M は式 (17) より次式で与えられる.

$$M = -\rho_0 U\{\sqrt{2\beta}c_{i,j-1} \mathbf{s}_l + [1 - (\beta + \alpha)]c_{i,j}\mathbf{s}_d + \sqrt{2\alpha}c_{i,j+1}\mathbf{s}_r\} \cdot \mathbf{n}$$
(19)

すると、**n**方向に成長していく積雪の堆積速度*V_s*は,式 (19) より次式で与えられる.

$$V_{s} = \frac{M}{\rho_{0}}$$

= $-U\{\sqrt{2}\beta c_{i,j-1}\mathbf{s}_{l}$
+ $[1 - (\beta + \alpha)]c_{i,j}\mathbf{s}_{d}$ (20)
+ $\sqrt{2}\alpha c_{i,j+1}\mathbf{s}_{r}\}\cdot\mathbf{n}$

以上より、積雪堆積速度ベクトル \mathbf{v}_s は次式により与えられる.

$$\mathbf{v}_s = V_s \mathbf{n} \tag{21}$$

図-5 積雪面を有する要素への降雪の供給

式 (20),(21) より算出された積雪堆積速度ベクトル \mathbf{v}_s を、有限要素方程式から算出される積雪の変位速度 \mathbf{v} に加え $\mathbf{v} + \mathbf{v}_s$ と補正することによって、降積雪過程に おける VOF 関数の移流計算を実行する.

3.4 降雪供給に伴う積雪密度 ρ の更新

積雪密度は変形と共に変化するが、積雪境界では降 雪により雪が堆積するため、それによる Euler メッシ ュ上での密度更新も必要となる。図-5 のように積雪面 ($\psi = 0.5$ の等高線)を内部に含んだ有限要素 V_e を考え る. V_e で切り取られる積雪面の長さを S_e とする.なお、 積雪堆積速度ベクトル \mathbf{v}_s は、式 (21)より $\mathbf{v}_s = V_s \mathbf{n}$ で与えられる.ここで、n は ψ を用いて次式で与えら れる.

$$\mathbf{n} = \frac{-\nabla \psi}{|\nabla \psi|} \tag{22}$$

この要素に対して微小時間 Δt 間に降雪供給がなされるとき,積雪面上には厚さ $V_s \Delta t = \mathbf{v}_s \cdot \mathbf{n} \Delta t$ の新たな雪の堆積を生ずる.よって, Δt 間における V_e 内の積雪の質量増分 Δm は次式で与えられる.

$$\Delta m = \rho_0 \mathbf{v}_s \cdot \mathbf{n} \Delta t S_e \tag{23}$$

すると、要素内の平均密度増分 $\Delta \rho$ は次式によって与 えられることとなる.

$$\Delta \rho = \frac{\Delta m}{V_e} = \frac{\rho_0 \, \mathbf{v}_s \cdot \mathbf{n} \, \Delta t \, S_e}{V_e} \tag{24}$$

上式を変形し、時間に関して極限をとると次式を得る.

$$\frac{\partial \rho}{\partial t} = \rho_0 \mathbf{v}_s \cdot \mathbf{n} \frac{S_e}{V_e} \tag{25}$$

ここで、積雪面境界 S に沿って特異性を示すデルタ関数 $\delta(S)$ を定義すると、次式を得る.

$$S_e = \int_{V_e} \delta(S) \, dV \tag{26}$$

また

$$\mathbf{n}\,\delta(S)\simeq -\nabla\,\psi\tag{27}$$

と近似すると,式(26),(27)より次式を得る.

$$\mathbf{n} S_e \simeq -\nabla \, \psi V_e \tag{28}$$

式 (28) を (25) に代入し,式 (22) を考慮すると最終的 に次式を得る.

$$\frac{\partial \rho}{\partial t} = -\rho_0 V_s \frac{-|\nabla \psi|^2}{|\nabla \psi|} = \rho_0 V_s |\nabla \psi|$$
(29)

式 (29) を積雪変形による密度の連続式²⁾, $\partial \rho / \partial t + \mathbf{v} \cdot \nabla \rho = -\rho \nabla \mathbf{v}$ に加えると次式を得る.

$$\frac{\partial \rho}{\partial t} + \mathbf{v} \cdot \nabla \rho = -\rho \,\nabla \,\mathbf{v} + \rho_0 V_s |\nabla \,\psi| \qquad (30)$$

式 (30) に基づく積雪密度更新の際には左辺にのみ CIP 法を適用し,その後右辺に関する計算を行うという2 段階の計算手順をとる.

3.5 拡散パラメータ b の決定

降雪濃度 c に関して水平 (x 軸) 方向の拡散方程式は 次式のように与えられる.

$$\frac{\partial c}{\partial t} = k \frac{\partial^2 c}{\partial x^2} \tag{31}$$

ここで k は拡散係数である.式 (31) から,長さ l の分割下で次の差分式を得る.

$$\Delta c_{i,j} = \frac{k\Delta t}{l} (c_{i,j-1} + c_{i,j+1} - 2c_{i,j})$$
(32)

ここで、**3.2** に述べた簡易モデルで、一段下の要素に 降雪供給がなされる間の時間 l/V を時間増分 Δt にと る.**3.2** での議論より、簡易モデルでは時間増分 Δt の 間に要素 (i, j) から隣接する 2 要素 (i, j - 1), (i, j + 1)に濃度 $bc_{i,j}$ がそれぞれ分配されることとなるので、式 (32) との対応から次式が成り立つ.

$$bc_{i,j} = \frac{k\Delta t}{l}c_{i,j} = \frac{k}{V}c_{i,j}$$
(33)

したがって、bは次式で与えられる.

$$b = \frac{k}{V} \tag{34}$$

4. 1次元降積雪場の解析による妥当性の検証

水平な雪面が一様な降雪を受ける1次元的な問題を 対象に構成手法を適用し,以下の半解析解と比較する ことでその妥当性を検証する.

4.1 半解析解の導出

速度 U で雪が一様に堆積する場合を考える.なお, 圧密を受けず無変形状態であれば,時刻 $t = t_0$ におい て高さ h_0 に位置することになる雪が,圧密変形を受け て時刻 t において $h(t,h_0)$ の位置にあるものとする. t_0 までに降った雪の上には、時刻 $t > t_0$ において $\rho_0 U(t - t_0)$ だけの質量の雪が積もっている.よって、 t_0 に降った雪の上に作用する圧縮応力 σ は次式で与え られる.

$$\sigma(t, t_0) = g \rho_0 U(t - t_0) \qquad (t \ge t_0) \tag{35}$$

ここで, gは重力加速度である.

積雪のひずみ速度 *ε*(圧縮を正) は次式で与えられる.

$$\dot{\varepsilon} = \frac{1}{\eta_c} \sigma = \frac{1}{\eta_{0c}} \sigma e^{-\zeta \rho} \tag{36}$$

ここで η_c は式(2)で与えられる圧縮粘性係数である. また,無変形時に dh_0 であった積雪厚が時刻tでdhになっているとすると、 $\dot{\epsilon}$ は次式で与えられる.

$$\dot{\varepsilon} = -\frac{d\dot{h}}{dh} = -\frac{d\dot{h}}{dh_0}\frac{dh_0}{dh} \tag{37}$$

また,密度ρに関しては以下の式が成り立つ.

$$\rho = \rho_0 \times \frac{dh_0}{dh} \tag{38}$$

ここで $A = dh/dh_0$ とおくと、 dh_0 は時間に依存しないので、 $\dot{A} = d\dot{h}/dh_0$ となり、式 (37)、(38) は以下のように表される.

$$\dot{\varepsilon} = -\dot{A} \times \frac{1}{A} \tag{39}$$

$$\rho = \frac{\rho_0}{A} \tag{40}$$

式(39)を式(36)に代入し、変形すると次式を得る.

$$-\frac{\dot{A}}{A}e^{\frac{\varsigma\rho_0}{A}} = \frac{g\rho_0 U}{\eta_{0c}}(t-t_0) \tag{41}$$

ここで1/A = r, $t - t_0 = \tau$ とすると, dA/A = -dr/rとなり, $A(t = t_0) = 1$ より次式を得る.

$$\int_{1}^{\tau} \frac{1}{r} e^{\zeta \rho_0 r} \, dr = \int_{0}^{\tau} \frac{g \rho_0 U}{\eta_{0c}} \, \tau d\tau \tag{42}$$

式(42)の両辺を各々積分して次式を得る.

$$E_i(\zeta \rho_0 r) - E_i(\zeta \rho_0) = \frac{g\rho_0 U}{2\eta_{0c}} (t - t_0)^2 \qquad (43)$$

ここで E_i は積分指数関数である.

時刻 t₀ に積もった雪の時刻 t における圧縮比 dh/dh₀ は,式(43)を満たす r を用いて以下のように与えら れる.

$$\frac{dh}{dh_0} = A = \frac{1}{r} \tag{44}$$

すると dh は次式のように表すことができる.

$$dh = \frac{dh_0}{r} = \frac{U}{r}dt \tag{45}$$

図-6 積雪深時刻歴解析における領域要素分割および解析 条件

よって,時刻 t における積雪深 H(t) は次式によって得 られる.

$$H(t) = \int_{0}^{H} dh = \int_{0}^{t} \frac{U}{r} dt$$
 (46)

H(t)の計算に際し、時間増分 Δt の下で式 (46) を離 散化する.式 (43) において、 $\tau = i\Delta t$ に対する $r \approx r_i$ と定義し、Newton-Raphson 法を用い r_i について解く.

 $t = n\Delta t$ での積雪深を H_n とすると、 H_n は次式で近 似評価できる.

$$H_n = U\Delta t \sum_{i}^{n} \frac{1}{r_i} \tag{47}$$

4.2 解析条件

解析条件を図-6 に示す. 20cm×50cm の矩形領域を 1辺1.25cmの正方形要素で分割し、領域底部に初期密 度 $\rho_0 = 0.098g/cm^3(=新雪密度)の初期積雪を5cm与$ える.時間増分60sの下、降雪供給を30時間行い、積雪深の時刻歴を算出する.

また降雪条件は、文献 9)、10)、11) を参考に、降雪 落下速度 V = 1.0m/s、積雪堆積速度 U = 1.0cm/hr と した. このとき式 (17) より、障害物の無い空間におけ る降雪質量密度 $\bar{\rho}$ は、 $\bar{\rho} = 2.78 \times 10^{-7}$ g/cm³ となる. なお、本解析では風は与えていない.

本研究では積雪の粘性係数を式 (2) により与えている が,式中の定数 η_0 , $\zeta \in \eta_0 = 2.085 \times 10^2 (\text{N} \cdot \text{s/cm}^2)$, $\zeta = 25.3$ と設定した²⁾.

また,引張変形時の硬化パラメータ a_t および圧縮変形時の硬化パラメータ a_c に関しては,いずれもゼロとしている.

4.3 解析結果

解析結果を図-7 に示す.図は積雪深の時刻歴変化の 様子を表したものであり、比較のため半解析解と合わ せて図示している.なお、本研究における積雪領域の 境界線、すなわち積雪面は VOF 関数 $\psi = 0.5$ の等高

図-7 積雪深の時刻歴解析結果と半解析解との比較

線としている.図から、本手法による解析結果が、半 解析解と同様に上に凸な曲線を描いていることを確か めることができる.時間の経過とともに多少の差異が 認められるものの、全時刻に亘り1%程度の精度が得 られており、本手法の妥当性が確認できる.

5. 積雪中のはりに作用する沈降荷重の解析

Nakamura は文献1)において,幅200cm,高さ90cm, 奥行き100cmの箱の中央に10cm×10cmの正方形断面 のはりを高さ50cmの位置に水平奥行き方向に設置し, そこに屋外採取した新雪を充填し,はりに作用する沈 降荷重を計測した.沈降荷重の計測は,はりが積雪中 に埋没した時点から開始され,1日に1回の間隔で行 われ,文献1)には7日経過時までの計測結果が示され ている.以下ではこのNakamuraの実験の再現解析を 行う.

なお当該実験の再現解析として,阿部ら²⁾⁵⁾は予めは りが埋設された積雪を解析初期条件として与え,圧密 変形解析を行っている.一方,本解析では雪の供給を 与えることで新雪の充填過程を再現し,その下での沈 降荷重の算出を行った.

5.1 解析条件

解析条件を図-8,図-9に示す.幅75cm,高さ100cm の領域を、1辺1.25cmの正方形要素により一様分割し た.なお、本解析では風は与えておらず、問題の対称性 から右半分のみを解析領域としている.また図-8に示 すように、領域底部には初期密度 $\rho_0 = 0.117g/cm^3$ の 積雪を10cm与える.なお本手法下での積雪の成長解 析には初期積雪の設定を要するため、はり上面に対し 初期密度 $\rho_0 = 0.098g/cm^3$ の積雪を厚さ2.5cm、はり 側面に対しては $\rho_0 = 0.129g/cm^3$ の積雪を厚さ1.25cm それぞれ与えた.また文献2)、5)と同様に、積雪とは りおよび壁面との間に摩擦は一切生じないものとした.

図-8 はりに作用する沈降荷重の解析条件

図-9 解析領域の要素分割

次に雪の充填条件について述べる.本解析では,最 終的にはり上部に積もる積雪の質量を文献1)での実験 と揃えることとし、はり上部の積雪質量が単位面積当 り 3.724g/cm² となった時点で雪の供給を終了させる. また図-10(後出)より、実験では約13時間で雪の充填 を終了していたものと推測される. そこでその条件に 合致する様に、降雪落下速度 V = 1.0m/s、積雪堆積 速度 U = 6.0 cm/hr と設定した. さらに, 測定開始時 における雪の充填条件を実験に合わせるため、新雪密 度 ρ_0 に関して 1.20×10⁴s 経過までは 0.117g/cm³, そ の後 2.40×10⁴s 経過までは 0.129g/cm³, さらに降雪供 給終了までは0.098g/cm³と,時間の経過とともにその 値を変更する.この時、これら3つの初期密度に対す る $\bar{\rho}$ はそれぞれ 1.95×10⁻⁶g/cm³, 2.15×10⁻⁶g/cm³, 1.63×10⁻⁶g/cm³となる. なお,解析初期にははり上 に降雪を供給せず,積雪深がはり上の積雪面(52.5cm) に一致すると同時にはり上にも雪を供給させる.また, 式 (34) の b は 0.01 s⁻¹ とした⁷⁾.粘性係数の設定に ついては, 文献 2) と同じく密度 $\rho < 0.11 \text{g/cm}^3$ のと

図-10 はりに作用する沈降荷重の時刻歴

き $\eta_0 = 10.58 \times (N \cdot s/cm^2), \zeta = 52.4, \rho \ge 0.11g/cm^3$ のとき $\eta_0 = 2.085 \times 10^2 (N \cdot s/cm^2), \zeta = 25.3$ と設定した.

引張変形時の硬化パラメータ a_t は文献 5) と同様に 0,15,25 と値を変更し、それぞれの結果を比較する.また圧縮変形時の硬化パラメータ a_c に関してはこれまで と同様にゼロのまま一定に設定した.なお本解析の場合、積雪堆積速度が速いため、降雪濃度の更新は毎ス テップ行う.

以上の設定の下,時間増分を 60s とし,降雪の供給 を 4.68×10⁴s(13 時間) まで行い,その後圧密変形を進 行させ,約 6.05×10⁵s(7 日間) 経過までの解析を実施 した.

5.2 解析結果の検討

(1) はりに作用する沈降荷重の時刻歴

 $a_t = 0, 15, 25$ としたときのはりに作用する沈降荷 重の時刻歴を、Nakamura の実験結果および文献 5) で $a_t = 25$ とした場合の解析結果と合わせ図-10 に示す、 本解析により得られた沈降荷重は、いずれも降雪供給 時は増加し続け、供給終了後は徐々に減少している。

なお、本解析結果で $a_t = 0, 15, 25$ とした場合をそれ ぞれ比較すると、沈降荷重の減少傾向は、文献 5)の場 合と同様にパラメータ a_t の増加とともに緩和されるこ とがわかる.また、それと同時に沈降荷重の値も大き く異なり、 $a_t = 25$ とした場合の結果は $a_t = 0$ とした 場合の約2倍の値を示している.これらのことから、引 張変形に関する硬化現象が沈降荷重の推移特性に及ぼ す影響は大きいことが確認できる.

 $a_t = 25$ とした場合の本解析結果が、Nakamura の 実験結果に非常に近い値を示した. そこで $a_t = 25$ と した場合の本解析結果を、同じく $a_t = 25$ とした場合 の文献5)での解析結果と比較する. 文献5)における 沈降荷重は、初期段階で実験値より25%程度大きな 値をとり、その後時間経過とともに減少し、実験値に 漸近して行く傾向を示している.一方,本解析結果は 解析時刻全体に亘り実験との良好な一致を示している. 前者の解析では、解析開始時に所定の積雪深が設定さ れており、その下で無変形の積雪に対して同時に自重 が作用するため、初期に過大な沈降荷重が発生したも のと考えられる.一方,新雪が徐々に充填されていく Nakamura の実験や本解析の場合,積雪の充填が完了 するまでに下層の積雪では既に圧密変形が進行してお り、そのため初期の沈降荷重が相対的に低くなったこ とが推測される.

以上より, Nakamura の実験におけるはりの沈降荷 重の発現には,積雪の充填過程と変形に伴う硬化現象 の2つが大きく関与していることが明らかとなった.ま た,このことから,一般の積雪沈降荷重の適切な評価 においても,降積雪過程の再現と硬化特性のモデル化 が重要となることが結論づけられる.

(2) 圧力分布と密度分布

 $a_t = 25$ としたときの、本解析による最終時刻にお ける圧力 pの分布、密度 ρ の分布をそれぞれ図-11,12 に示す.これらの図より、はりの影響はその側方 30cm の範囲内に及び、それ以遠では概ね一様な変形状態と なっていることがわかる.またはり上部の角から側面 付近にかけて最大約 9.0×10^{-2} N/cm² 前後の引張力が 発生しており、この引張力がはりに作用する大きな沈 降荷重を引き起こしているものと考えられる.

また図-12を見ると、はり側面付近の積雪密度が他の 箇所に比べて小さくなっている.その値は約0.1g/cm³ となっており、新雪密度と同程度の値のままであるこ とがわかる.これは、はり付近に引張力が作用するこ とと、引張時には等体積変形するという積雪特有の性 質により、はり付近の積雪に密度変化を生じなかった ためと考えられる.一方、領域右端底部の積雪密度は 0.271g/cm³であり、最大値を示している.なお、積雪 の右側中段部付近の密度が局所的に高くなっているの は、前述のように雪の充填過程における積雪密度が下 方から順に0.117g/cm³、0.129g/cm³、0.098g/cm³ と 変化しているためである.

(3) 積雪面形状の比較

最後に本解析結果 $(a_t = 0, 25)$ と Nakamura の実験 結果における 3.7 日経過時の積雪面形状の比較を行う. 結果を図-13 に示す. なお図中の各線は積雪面を示して おり,解析結果においては $\psi = 0.5$ の等高線を描画し たものである. $a_t = 0$, 25 とした場合の本解析結果を 比較すると,はり側面付近の形状に顕著な差異が認め

図-11 最終時刻における圧力 p の分布

図-12 最終時刻における密度 ρ の分布

られる. 図-11 に示したように, はり側面付近には引張 力が集中して発生しているが, a_t の値を大きく設定し たことによって積雪の硬化現象が反映され, その結果変 形の進行が抑制されたことが窺える. なお, 両者のはり 上部の積雪厚が等しいにも関わらず, 図 10 に示した沈 降荷重値の時刻歴には大きな差が見られる. このこと は, 沈降荷重の値は構造物の上部に存在する積雪のみ ならず, 周辺の積雪の変形の影響を大きく受けるとい うことを意味しており, 硬化現象を考慮したことによ り荷重値に差を生じたものと思われる. また, $a_t = 25$ とした本解析における雪面形状が実験結果と比較的近 いことからも, 硬化モデルの妥当性を再確認すること ができる.

なお本解析結果は、はり周辺では実験結果に比べて 変形が小さ目であり、逆に領域右側では大き目となっ ている.文献1)では雪の充填方法について詳細が述べ られていない.そのため、解析では5.1に述べた様に して雪の充填条件を設定した.積雪面の高さの差は最 大で約5cm程度となっているが、この差の原因の1つ として、実験時における実際の雪の充填方法と解析条 件との違いが考えられる.

図-13 3.7 日経過時における積雪面形状の比較

6. おわりに

本研究では降雪供給による堆積を伴った積雪の変形 解析手法の構築を試みた.本研究を通して得た結果は 以下の通りである.

(1) 降積雪過程解析手法の構築

降雪過程を簡易な移流・拡散モデルで与え,当該事 象に対する計算量の軽減を図った.また,降雪からの 雪の供給を積雪の変形過程に組み込むことで,積雪の 成長・変形解析を構成した.一様な降積雪場の問題に 本手法を適用し半解析解と比較することで,その妥当 性を確認した.

(2) Nakamura による実験の再現解析

Nakamura によってなされた,はりに作用する積雪 沈降荷重の測定実験に提案手法を適用し,その再現解 析を試みた.その結果,Nakamuraの実験で得られた 沈降荷重の発現特性の説明には,積雪の充填過程の考 慮と文献5)に構築した雪の硬化現象の2つが不可欠で あることが明らかとなった.なお,実際の積雪は降雪 による堆積過程を経ながら自重による変形を受けるこ ととなる.したがって,そのような状態下における雪 荷重の適切な評価には,上述の2つの効果を考慮する ことが重要になるものと思われる.

(3) 今後の課題

本研究では、積雪の堆積・変形過程の解析を主目的 とした.その際に、降雪による雪の供給過程について は上述のように簡易なモデルを用いた.しかし、吹雪 を伴う積雪形成とその力学挙動とを解析対象とする場 合、風による影響の適切な評価が必要となる.そのた めには吹雪の物理モデルの導入^{7),8)}が不可欠であるが、 この点については今後の課題としたい.

参考文献

- Nakamura, H. : Studies on the settlement force of snow as a generation mechanism, *Rep. of NRCDP*, No.41,361-385, 1988.
- 阿部和久,紅露一寛: VOF 法を用いた積雪変形有限要素解析法,構造工学論文集,Vol.51A, 277-284, 2005.
- Hirt,C.W. and Nichols,B.D. : Volume of Fluid (VOF) Method for the Dynamics of Free Boundaries, *J.Comp.Phys.*, **39**, 201-225, 1981.
- T.Yabe and T.Aoki : A universal solver for hyperbolic equations by cubic-polynomial interpolation, I .Onedimensional solver, II.Two- and three- dimensional solvers, Comp.Phys.Commun., 66, 219-242,1991.
- 5) 阿部和久,紅露一寛:雪の硬化現象のモデル化と積雪 変形有限要素解析への適用,構造工学論文集,Vol.52A, 109-117,2006.
- 6) 篠島健二:雪の粘弾性的取り扱い,鉄建報告, No.328, 1962.
- 山下四郎,河村哲也:防雪柵まわり流れと堆雪形成の数 値的研究,日本雪氷学会誌「雪氷」,62巻5号,451-461, 2000.
- 根本征樹,西村浩一:吹雪の物理モデルの現状と課題, 日本雪氷学会誌「雪氷」,65巻3号,249-260,2003.
- 9) 石坂雅昭:雪粒付雪片の落下速度について、日本雪氷学 会誌「雪氷」、57巻3号、229-238、1995.
- 梶川正弘,後藤博,金谷晃誠,菊池勝弘:気象要素を 考慮した新積雪密度の推定式,日本雪氷学会誌「雪氷」, 66巻5号,561-565,2004.
- 11) 梶川正弘,後藤博,猿渡琢,金谷晃誠,橋本正秀,菊池 勝弘:新積雪密度と降雪粒子の諸特性の関係,日本雪氷 学会誌「雪氷」,67巻3号,213-219,2005.

(2007年9月18日受付)