サンドイッチ合成構造部材耐火実験への熱伝導及び熱応力解析

Heat analysis and Stress analysis for fire test result to Steel-Concrete composite member

中井 章裕*, 清宮 理**, 工藤 健一*** Akihiro Nakai, Osamu Kiyomiya, and Kenichi Kudou,

*早稲田大学大学院理工学研究科,建設工学専攻(〒160-8555 東京都新宿区大久保 3-4-1)
**工博,早稲田大学教授,社会環境工学科(〒160-8555 東京都新宿区大久保 3-4-1)
***国土交通省近畿地方整備局神戸港湾空港技術調査事務所(〒651-0082 神戸市中央区小野浜町 7-31)

Composite members made of steel and concrete are adopted for tunnels. Since steel plates are exposed to the internal side of the road, vehicle fire countermeasures are required. After fire tests, concrete cracks were observed and strains of the steel plate were fairly large beyond design values due to high temperature and vapor pressure. To be aimed at clarifying these phenomena, heat analysis considering the air and stress analysis considering the sectional forces of tunnel were performed.

キーワード:サンドイッチ部材,有限要素法解析,耐火性能,トンネル,耐火被覆

1. はじめに

トンネル火災の事故例が各国より報告・分析¹⁾²されて いる.特に水底トンネルでは、車両火災による構造部材 の損傷が、水や土砂のトンネル内への流入を招くことに よって施設全体の機能不全をきたし、人命が危険にさら される可能性もある.このような観点からトンネル構造 部材への耐火対策として、水底トンネルである神戸港島 トンネル³、東京港第二航路トンネル、東京港臨海道路沈 埋トンネルなど多くの水底トンネルでは耐火被覆が設置 されるに至っている.

水底トンネルの一形式である沈埋トンネルにおいて, 図-1 に示すような鋼殻と充填コンクリートによるサン ドイッチ合成構造が最近広く採用されている.この構造 は、格子状の鋼製枠の中に高流動コンクリートなどを充 填した合成構造であり、形鋼(L字型のずれ止め)が鋼 板に溶接されていることから、鋼殻とコンクリートが一

体化しており剛性が高いという特徴を有している. しか しながら、主部材である鋼板がトンネル内空側に露出し ているため、車両火災に対する対策が不可欠である.従 来から火災による構造物の損傷については、部材の耐火 性能の評価や、火災曲線の検討、耐火被覆の開発、熱解 析など総合的な研究が行われており、トンネル構成部材 は高温になると強度が大幅に低下することが確認されて いる.この対策4として、耐火被覆などを鋼板表面に取り 付けることによって部材に対する熱の伝達を抑制し、鋼 材・コンクリートの温度を許容温度内に収める設計方法 が現在広く用いられている.しかしながら、部材が火災 による加熱を受けた場合には温度変化による直接的な影 響だけではなく、構造系として力学的な損傷を受けるこ とは明らかであるが、まだこのことに対する議論は少な い. 例えば、トンネル火災時には加熱面が限定的なこと より、熱分布が不均一となることによって相当量の熱応 力が発生する.また,沈埋トンネルにサンドイッチ構造 を用いた場合は、水密性の確保のために完全な密閉構造 となっている特性上, 内部コンクリートが 100℃以上にな るとコンクリート中の水分の水蒸気化によって内部圧力 が発生することが考えられる.

これらの問題に対して、筆者らは以前に耐火被覆で保 護された沈埋トンネルの実物大模型を作成して耐火実験 を行い、供試体の挙動を確認している.また、併せて熱 伝導および熱応力解析を行い、耐火実験をFEM解析によ り模擬できる事を確認した(文献5)を参照.しかしなが ら、前回の検討は以下の課題を残すものであった.第1 に熱伝導解析で設定した空気層の厚みについて更なる検 討が必要であった. 前回実施した熱伝導解析においては、 耐火被覆-鋼板間および鋼板-コンクリート間に 1mm の空気層厚を設定したところ、各着目点における温度履 歴は実験値と良好に一致したが、空気層厚の厚みは既往 の研究を参考として設定したものであり、1mm以外のも のを用いた場合、部材着目位置の熱履歴にどのような結 果をもたらすのか確認できていなかった。 第2 に前回実 施した熱応力解析では、コンクリートの損傷は熱ひずみ によるものだと結論づけたが、鋼板の挙動については着 目しておらず、耐火実験において鋼板に降伏レベルのひ ずみが発生した理由については未解明であった. 第3に 耐火実験では局部的な挙動に着目する為、供試体を無応 力状態としていたが、供用時の沈埋トンネルは水圧等に より高軸力状態となっている場合が多い. 今後, 断面力 を再現した追加の実験を行うにあたっては、解析等によ り各応力状態における供試体の損傷程度を把握しておく 必要がある.これらの課題を克服する事を目的として、 本論文では解析的な観点からいくつかの検討を行った.

2. 耐火実験⁵⁾

1 耐火実験方法と設計

600

B

耐火実験における供試体 幅 4200mm, 奥行き 2900m リートの周囲を鋼板で囲う 板と内部コンクリートの一 の形鋼を 600mm 間隔で設 鋼板によりコンクリートが ドイッチ構造の局部的な挙 体は無応力状態とし,支持

供試体の設計温度は表-コンクリートの許容温度に 例えば高温時の圧縮強度残

整理した結果によると、300~400℃程度から圧縮強度の 残存率が低下することが確認できる⁷. その他既往の研究 を参考とし、コンクリートの設計温度を350℃と設定した. 一方、高温における鋼材の性質は規格や製造方法によっ て大きく異なるが、受熱温度400~500℃程度から強度の 低下が見られ、一般に受熱温度600℃程度までは冷却後に その材料特性が回復すると言われている.本検討に用い た沈埋トンネルのような鋼殻構造では、鋼材は主部材で あり,鋼材の性質の変化による常時荷重に対する耐力の 低下を避ける為、コンクリートと同様である350℃を設計 温度とした.耐火被覆は、近年使用実績が増えている吹 き付け系耐火被覆を使用し、厚みについては別途計算を 行い 20mm とした.加熱温度-時間曲線は図-3 に示す RABT90 分曲線を使用した. 温度測定は、鋼板の表裏面、 鋼板裏面から 20mm, 50mm, 90mm, 140mm, 190mm, 290mm位置で行った. 鋼板の挙動を確認するため, 鋼板 表面に3箇所, 裏面に3箇所ひずみゲージを設置した. また、加熱中に内部圧力が発生することが想定されたた め、供試体中心部付近の鋼板下面に穴をあけて連通管を 接続し、水蒸気圧を圧力計によって計測した.

表-1 設計条件

上冬 件 ⁶⁾		種類	使用材料	設計温度	備考
		鋼板	SM490Y		t=8mm
トの十次は図 う にニート)	+ 217	L形鋼, FB材	SS400	350°C	t=9mm
	トクル	コンクリート	尚流 加 「 市 二 「 市 二 町 二 ヤ メ ン ト		f'ck=30N/mm2 施工厚 20mm
m, 高さ500mm とし, こ	コンク	吹付系耐火被覆	バーキュライト	—	メッシュ筋付
)サンドイッチ構造とした	こ. 鋿	1400		L	
-体化のために, 150mm×9	90mm	1200			
置し鋼板と溶接した.本事	実験は	1000			
「密閉された状況における	るサン	800	++		
(動に着目しているため,	供試	戚 600			
条件は単純支持とした.		400	+	-	
-1に示す条件とする 現地	たでは	200	$\begin{array}{c}++$	- + -	
へいての明確か指標けた	2015	0	50 100	150 200	250
ま存率を常温時の圧縮強度	ます。 変毎に	図-3	加熱温度一時間	曲線(RA	BT90分)
平面図			A-A 断面図		
5@600=3000 600	1		2900	-1	
_~		250	8@300=2400	2	
Þ		コンクリート PL-9	<u>FB-65*9</u>		
			通孔		
		<u> </u>	<u>0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 </u>		
		/			
		<u></u>	PL-8	<u>65*9</u>	
	B 60				
		600	3000		
			5000=3000		
			<u>FB-6J*7</u> L-	150×90×9	
	l <u> </u>	<u>``</u>		- 	200
Ļ		 FB-65*9	_ 		
図-	-2 耐火実験	供試体		<u>150×90×9</u>	

図-4に供試体の内部温度-時間曲線を示す. 鋼板の温 度ピークは燃焼開始 100 分で表面が 425℃, 裏面が 400℃ となった. 一方, コンクリートの温度ピークは, 鋼板裏 面から 20mm 位置において燃焼開始 150 分で 170℃とな った. コンクリート内部の温度ピークは, 鋼板から離れ るほど低くなり, ピーク時刻は遅くなる傾向となった. 鋼殻構造に火災温度を与えた場合, 加熱が進むと加熱側 の鋼板とコンクリートとの間に隙間ができ, この空間が 熱の遮断層となって温度分布に影響を与えることが報告 されている[®]. 本実験でも, この現象は確認され, 加熱側 鋼板とコンクリート間の温度差はかなり大きくなってい る.

図-5 に内部圧力ー時間曲線を示す. 圧力のピークは燃 焼開始 190 分程度で 0.27MPa となった. これは 100℃以 上になるコンクリートの領域が最大となる時刻と概ね一 致しており,このことからコンクリート中の水分の水蒸 気化によって内部圧力が発生したことが確認できた.

図一6に加熱側鋼板のひずみー時間関係を示す(なお, 2005) 図に示したひずみ履歴は温度上昇に伴うひずみを補正し近のである).各測定位置のひずみ履歴はばらつきが多かったが、鋼板温度が上昇する期間では圧縮側になり、 鋼板温度が下降する期間では引張側になるような傾向となった.また、加熱側のひずみは引張側になるような傾向となった.また、加熱側のひずみは引張側に、内面側のひづみは引張側に、内面側のひずみは正縮側にシフトしており、観測された圧力値が大きいほどこの傾向が強くみられたことから、水蒸気圧によって形鋼間の鋼板に正の曲げモーメント(加熱側引張・内部コンクリート側圧縮)が発生していたことが推測できる.なお、発生ひずみは降伏ひずみを超えるレベルのものであり、温度分布が比較的平坦になり、内部圧力も減少した実験終了時付近でも大きな値のひずみが残

加熱実験後、供試体を切断しコンクリートのひひ害れ状況を観ち 察した 図-7 に示すのは代表的な動面であるが、①上下形鋼間 の鉛直ひひ害れ、②加熱順形鋼間の水平ひひ害れ、③形鋼先端か らの余砂ひひ害れ、④形鋼背面からの余砂ひひ害れ、が確認され ている.ただし、本実験では事前にコンクリートのひひ害れを想 定しておらず、コンクリートひずみ計は未設置であった。よって、 ひひ害れの発生時期や順名に関する情報は得ていない、

3. 1次元熱伝導解析⁸⁾⁹による検討

本検索すでは、耐火実験の熱挙動について、空気層厚をパラメー タとした熱伝導解れこよってシミュレーションする、単一材料から構成された構造体の火災に対する熱伝導解析手法は現に確立 されているが、サンドイッチ構造のような異種が料から構成され た複合構造物では、異なる材料間に助熱材として作用する空気層 が存在することから、解析を行う際こは空気層の取り扱いを慎重 に設定する必要がある。空気層の厚みが非常に大きい場合は、空

気層内の熱の移動は対流が支配的となり、有限体積法のような流体解析を行う必要が生じてくる。更に、解析対象が熱伝導体一流体から構成される場合は双方を連成させて解かなければならず、 これは非常に難易度の高い解析となる。また、複合部材間に存在 する空気層程度の微少な領域に対して流体解析が適用可能かと ういう問題点もある. そこで、本検索すでは空気層を構造体と同様 な熱伝導体としてとり扱うこととする. 異種材状間の熱の移動方 法は、①対流熱伝達 ②熱伝導、③熱ふく射であると考えられる が、これらをマクロ的に取り扱い、見かけ上等価な熱伝導率と板 厚を設定することができるならば、簡易的に解析することが可能 となる.

トンネルは水平方向および長手方向に同一断面を有すること から、構造を1次元でモデル化する (図-8). 各部材の熱伝導 率・比熱の温度依存性については、表-2に示すような値に設定 した、潜熱の影響については、さほど温度分布に影響を及ぼさな いと考えられる為、考慮しなかった、実験供試体において空気層 が存在すると考えられる箇所は、鋼板ーコンクリート間および鋼 板---耐火被覆間である、鋼板-コンクリート間の空隙の発生はコ ンクリート中の水分の水蒸気化により発生し、この現象は実験で も確認されているが、空隙幅は方部圧力の作用によって時々刻々 と変動するので、これを熱云薄解析に取り入れることは非常に困 難である. そこで, 本解析では空気層厚は変動しないと仮定して 要素サイズを一定に固定した なお、このとき用いた空気層の物 性间 读云 第 20241W/m°C, 比熱 1006J/kg°C, 密度 1.293kg/m3 とした、解析ケースは表-3に示すような、空気層厚をパラメー タとした5ケースの解析を行った 加熱一時間曲線は、耐火実験 と同様こRABT 曲線をモデル下面全体に入力し、モデル上面に は熱伝達竟界(14W/m²C)を設定した¹⁰.時間方向の分害ピッ チは60秒とし、加熱開始後6時間までの解析を行った

図-8 1次元熱伝導解析モデル

	鋓	板	コンク	リート	耐火	被覆
温度	熱伝	比熱	熱伝	比熱	熱伝	比熱
°C	導率		導率		導率	
	W/m°C	J/kg°C	W/m°C	J/kg°C	W/m°C	J/kg°C
0	55.01	482	2.866	699	0.187	1300
100	51.84	490	2.414	815	0.193	1300
200	48.46	514	2.014	918	0.200	890
300	44.99	554	1.686	1007	0.207	890
400	41.57	610	1.431	1082	0.214	890
500	38.32	681	1.248	1144	0.221	890
600	35.37	769	1.138	1193	0.228	890
700	32.84	873	1.100	1228	0.235	890
800	30.87	993	1.134	1249	0.242	890
900	29.57	1129	1.241	1257	0.249	890
1000	29.08	1281	1.420	1252	0.256	890
1100	29.52	1449	1.671	1233	0.256	890
1200	31.02	1633	1.995	1201	0.256	890

表-2 温度依存物性

表3 解析ケース			
ケース名称	空気層厚		
Case-H1	0mm		
Case-H2	0.2mm		
Case-H3	0.5mm		
Case-H4	1.0mm		
Case-H5	2.0mm		

ところで、筆者らの以前の検索すではか部コンクリートのひび割れは、鋼板-コンクリートの温度差に起因するものだと結論づけ ていた。ひび割れの発生が両者の温度差に依存するならば、熱応 力解析において供認体の損傷過程を模擬する場合は、鋼板-コン クリート間の温度差を熱伝導解析により正確に求める必要があ る.そこで、各ケースの鋼板-コンクリート内部 20mm 位置の 最高温度差について、実験値と比較した結果を図ー10 に示した。 解析では空気層厚の設定幅の増加に伴い、両者の相対差が増加す る傾向にあることがわかった。また、本観点においても空気層厚 を 1mm 程度とすると解析値が実験値とよく適合するという結果 となった

4. 2次元熱応力解析による検討

4.1 解析条件

本検討では、コンクリートのひひ割れ及び鋼材の降伏 を考慮した非線形熱応力解析により、耐火実験を模擬す る. 解析モデル図を図-11 に示す. 供試体端部の600mm の範囲は解析対象から除外し、モデルの対称性を考慮し て1/2の解析モデルとした.熱応力解析に先立ち実施する 2次元熱伝導解析のモデル化は、1次元熱伝導解析で空気 層厚を1mmとすると良好な結果の得られた事から、同様 の厚みに設定した. また, 各構造部材の熱特性について も1 次元熱伝導解析と同様のものを用いた. 熱伝導解析 一熱応力解析で使用するメッシュは基本的に同一とする が、耐火被覆の剛性は小さく構造部材として期待できな いことからヤング係数を微小値に設定し、空気層につい ても同様に微小値を設定して熱応力解析に影響を及ぼさ ないダミー部材として取り扱った.供試体下面側の形鋼 -コンクリート間については、空気層をダミー要素(力 が伝達されない)としているものの、 図-12 に示すよう な圧縮については力を伝達し、引張りについては力を伝 達しない挙動を示す界面要素 (インターフェース) を二 重要素として追加する事により、鋼材の剥離を考慮でき る接合条件とした. なお、せん断方向については界面の 摩擦を無視し、自由に滑るモデルとした.

コンクリートのひび割れのモデル化については分散ひ びわれモデル (Smeared Crack Model)を用いた.本解析 におけるひび割れの判定はコンクリートの最大主応力が 引張強度を超えた場合とし、ひび割れ発生と同時に主応 力方向の応力を解放し、コンクリートの剛性を低減させ るものとする.引張軟化特性については、コンクリート 標準示方書 (構造性能照査編)¹¹⁾を参考に設定した.この 引張軟化特性は、図-13 に示すようにコンクリートの破 壊エネルギー G_F をパラメータとした引張応力とひび割れ 幅で定義されている.このとき、コンクリートの破壊エ ネルギー G_F は下記の式から求めた.

 $G_F = 10(d_{\max})^{1/3} \cdot f_{ck}^{\prime 1/3}$ (N/m) (1) ここで、 d_{mx} は粗骨材の最大寸法 (mm) である.

火災による高温に曝されたコンクリートは表面の剥離・飛散を伴う爆裂現象(Explosive Spalling)によって致 命的な損傷を受けると考えており、原因として内部の水 蒸気圧の上昇もしくは圧縮側の熱応力であると考えられ ている.しかしながら、本供試体は耐火被覆で保護され ており、内部コンクリートの最高温度も200℃程度であっ て、実験でもこのような異常な現象は確認されていない. よって、本解析ではモデルの簡素化の為に圧縮側の材料 非線形性は考慮せずに、弾性として扱った.鋼材の構成 則については、von-Misesの降伏基準を適用し、降伏後の

図-12 剥離モデル 図-13 引張応力ひび割れ幅関係

ヤング係数は初期剛性の 1/100 となるように設定した¹³. なお、コンクリートと鋼材のヤング率や強度、線膨張係 数等の温度依存性については、供試体の設計温度を物性 値が大きく変化しない範囲に設定したため、今回は考慮 しなかった.応力解析で用いた主な物性値の一覧を表-4 に示す.水蒸気圧力のモデル化については、実験で得ら れた最大圧力 0.27MPa から等価な節点力を算出し、加熱 側の鋼板内面に下向き方向、内部コンクリート表面に上 向き方向に載荷した.時間方向の圧力の変動量について は、実際の計測値を利用して変動させた.応力解析時の 拘束条件については、実験と同様な条件になるように支 点を鉛直拘束し、対称面については水平方向を拘束した.

表-4 応力解析で用いた主な物性値

材料	ヤング 係数 (N/mm ²)	ポアソン 比	線膨脹 係数 (/℃)	備考
鋼材	2.0×10 ⁵	0.3	12×10 ⁻⁶	降伏応力度 315 N/mm ²
コンク リート	3.1×10^{4}	0.2	10×10 ⁶	引張強度 4.5N/mm ²
空気層 耐火 被覆	ヤング係数	(をコンクリー	・トの10×10	10倍程度に設定

4.2 2次元熱云鄭附結果

応力解釈に先立ち、図-11 に示す2 次元モデルを用いた熱伝 導解析を実施した。図-14 に部材内の温度変化履歴を示す。鋼 板表面は加熱開始110分後に最高温度420℃、コンクリート内部 20mm 位置では加熱開始後150分に最高温度190℃となり、実験 値と概ね等しい結果となった

4.3 鋼板の損傷に対する検討

本検討では、実験で観察された鋼板の損傷こついて、その原因 を特定する事を目的として熱応力解析を実施する.熱応力解析で 温度を入力するケースについては、2次元熱伝導解析で得られた 結果を利用する.水蒸気圧力を入力するケースについては、実験 で得られた測定値を利用する.解析ケースは、表-5に示すよう に水蒸気圧力を入力したCaseL1,温度のみを入力したCaseL2, 水蒸気圧力と温度を同時載荷したCaseL3の3ケースとした

表5 解析ケース			
ケース名称	入力荷重		
Case-L1	水蒸気圧力		
Case-L2	温度		
Case-L3	水蒸気圧力+温度		

各ケースにおける鋼板の水平応力履想図を図-15~図-17 に 示す.水蒸気圧力のみ入力したCase-L1では、鋼板の発生応力値 は降伏応力を超えるレベルとなっており、水蒸気圧力のみでも鋼 板が損傷するという結果となった 同一の着目位置においては、 上面側は圧縮応力状態であり、下面側は3 脹り応力状態であるこ とから、板曲げに起因する水平応力が発生していることがわかる. また、本構造の特徴より板曲げ発生時の支点は新銅位置となる事 は明らかであるが、解析でも最大の応力発生箇所は新鋼の中間位 置となり、その他の位置では応力が低減していることから、構造 的に考えても矛盾のない結果となった。温度のみ入力した CaseL2は、加熱開始後40分程度までは鋼板上下面とも若干の 圧縮応力状態となっており、その後圧縮応力は減少した、鋼板の 熱膨脹に対する拘束応力は形鋼位置におけるコンクリートの拘 束力によって決定されると考えられるが,形鋼位置近傍のコンク リートの損傷が進展すると拘束力が弱くなり、鋼板は無応力状態 で自由変形することが可能こなる. 前回の検討では、コンクリー トの鉛直ひひ害れが防熱静能後40分程度で発生するとしたが、 応力の解放は初期段階におけるコンクリートのひひ害れによっ てもたらされるものであったと考えられる.水蒸気圧力および温 度を入力した Case-L3 の鋼板の応力履歴は、概ね Case-L1 と Case-L2 を加えたものと同様となった、以上の結果より、耐火実 験で観察された鋼板の損傷は、水蒸気圧力による鋼板の曲げに

起因しており、熱応力に影響によるものではないと推測する ことができた

4. 4 供用時の断面力状態に対する検討

今回実施した実験及びそれに対する解釈は、沈埋トンネルの火 災時における局部的な挙動を把握する事を目的としていた為、供 試体を無応力状態としていた。しかしながら、供用時においては 水圧等によりトンネル構造体には軸力や曲げモーメントが作用 している状態となっていることが想定される。そこで、供用時に おけるいくつかの断面力状態下での火災によるコンクリートの 損傷の有無についての検許解釈を行った、沈埋トンネルの設計 おいては、使用限界状態の照査は許容応力度法に基づいて行われるのが一般的であり、その際こ用いられる材料の許容応力度の一例を表-6に示す¹³.

17:1

表一6 計谷応力度の一例				
材料	種別	許容応力度		
コンクリート	許容曲げ	$10N/mm^2$		
(f'ck=30N/mm2)	圧縮応力度	101\/11111		
鋼板	許容	$210 \mathrm{N/mm^2}$		
(SM490Y)	引張応力度			
形鋼	許容	140 N/mm ²		
(SS400)	引張応力度			

本例より, 沈埋トンネルの設計時には内部コンクリートの圧縮力が 10N/mm²程度となるような断面力で設計される事が多いと考えられるが,検討対象である沈埋トンネル頂版の断面力状態は軸力と曲げモーメントの組み合わせによるいくつかのパターンが想定できる.そこで,解析で用いる断面力状態については表-7に示すような7ケースを採用した. Case-F1 は耐火実験と同様な状態である無力状態, Case-F1 は耐火実験と同様な状態である無力状態, Case-F2 へCase-F5 は圧縮+負曲げ状態, Case-F6 〜Case-F7 は圧縮+正曲げ状態を想定している.載荷荷重については,供用時の断面力を保持した状態で,2次元熱伝導解析で得られた熱履歴と,実験で得られた水蒸気圧力の入力を行った.

表―7 解析ケース				
	荷重図	応力状態		
Case-F1	供試体	上縁0N/mm ² 下縁0N/mm ²		
Case-F2	供試体	上縁5N/mm ² 下縁5N/mm ²		
Case-F3	供試体	上縁10N/mm² 下縁10N/mm²		
Case-F4	供試体	上縁5N/mm ² 下縁10N/mm ²		
Case-F5	供試体	上縁0N/mm ² 下縁10N/mm ²		
Case-F6	供試体	上縁10N/mm ² 下縁5N/mm ²		
Case-F7	供試体	上縁10N/mm ² 下縁0N/mm ²		

各ケースの加熱機能後 120 分におけるひひ害れコンター図を 図-18 (a)~(g) に示す.耐火実験と同条件である無応力状態の Case-F1 では、形鋼上縁からの鉛直、水平ひひ害れ、およひ前面、 背面からの斜めひひ害れか潮察され、耐火実験と同様な性状を示

図-18 加熱開始後 120 分におけるひび割れコンター図

している。純圧縮状態を想定した Case-F2 ~ Case-F3 は水平方向の圧縮力の増加に伴い、ひひ害いが低減していることがわかる。

圧縮+曲げ状態を想定した Case-F4~Case-F7 については、い ずれも水平圧縮芯力度の増加箇所のひび害肌が低減する傾向と なった。しかしながら、Case-F4 および Case-F5 の下縁則の初期 応力状態は Case-F3 の下縁則と等しく、Case-F6 と Case-F7 の初 期応力状態は Case-F3 の上縁則と等しくなるように設定してい るが、いずれについても、ひび害肌の低減度は Case-F3 のレベシレ には達していないことがわかる。これは、熱応力により形綱匠傍 の局部ひび害肌が発生した場合、供試体や部で応力の再分酒が行 われるが、その結果コンクリート内部の応力状態は初期状態で想定したものと異なる分布性状となった事が理由だと考えられる.

無応力状態で実施した耐火実験では、予期し得ない程度のコン クリートのひび害れが発生したが、供用時の断面力を考慮した本 解析によると水平圧縮応力の増加に伴いコンクリートのひび割 れは大きく低減しており、火災時のトンネル構造体の検討におい ては、供用時の断面力再現が極めて重要である事を示唆した結果 となった

5. まとめ

耐火被覆を行ったトンネルが火災を受けた場合におけ る構造系としての損傷程度の検討については、以前から その必要性が指摘されていたものの、耐火実験の実施例 が少なかったことより、議論されることはなかった.特 に、複合構造における熱伝導解析方法、ひび割れを考慮 した熱応力解析方法の事例は少なく、解析手法が確立さ れていない.本論文は、筆者らが以前に行った耐火実験 に対して、いくつかの解析的検討をおこなったものであ る.本検討によって得られた知見は以下のとおりである.

(1) 複合構造に対して熱伝導解析を行う際には, 異種 材料接続部に適切な空気層厚を設定する必要があるが, 耐火被覆で保護されたサンドイッチ構造についての実験 値と解析値を比較したところ,鋼板-コンクリート間に 加えて鋼板-耐火被覆間に空気層を設定し,設定厚を lmm 程度とすれば良好な結果が得られることがわかった. (2) 筆者らが以前に実施した耐火実験では,鋼板に降 伏レベルのひずみが発生したが,その原因は不明であっ

(人レンシルのひりみが発生したか、その原因は不明であろた.そこで、荷重を水蒸気圧力と温度に分離載荷して熱応力解析を実施したところ、水蒸気圧力を入力したケースでは鋼板に過大な応力が発生し、温度を入力したケースでは鋼板の応力は無視しても良い程度のものだった.この結果より、鋼板の降伏ひずみの主原因はコンクリート中の水分の蒸発による水蒸気圧力である事が推測できた.

(3)供用時の断面力を想定したパラメータ解析では, 外力がプレストレスと同様な作用をすることから, コン クリートの損傷(ひび割れ)に大きな影響を与える事が わかった.特に水平圧縮応力度がひび割れの低減の支配 的要因であった為,今後耐火実験を行う際には供用時の 断面力状態の再現が重要である事が解析的に確認された.

今回実施した解析的検討により、車両火災時のトンネ ル構造体の挙動を確認する為には、供用時の断面力を再 現した上で耐火実験を行う必要がある事が判明した.よ って、今後は追加の実験を行い、供用状態での各構造部 材の損傷程度を確認したいと考えている.また、実験結 果が得られた後に、FEM 解析結果との比較を行い、解析 の妥当性の判定と適切なモデル化方法を更に検討してい きたい. なお、本研究は(社)日本鉄鋼連盟の研究助成を得 て実施したものである.

参考文献

- Haack, A. : Fire Protection in Traffic Tunnels Initial Findings from Large-scale Tests, *Tunnelling and GroundSpace Technology*, Vol.7, No.4, pp.363-375, 1992.
- Studiengesellschaft Stahlanwendung e.V. : Fires in Transport Tunnels, Report on Full-Scale Tests, EUREKA-Project EU 499 :FIRETUN,November,1995.
- 運輸省第三港湾建設局:神戸港港島トンネル工事誌, pp.4-202~.4-211, 平成11年3月
- 4) 清宮理,飯田博光,滝本孝哉:沈埋トンネル内の車 両火災への対策の現状,トンネルと地下4月号, pp.63-70,2000年4月
- ワ井章裕,清宮理,工藤健一,山本邦夫:サンドイ ッチ合成構造部材の耐火実験への有限要素解析の適 用,構造工学論文集 Vol.52A, pp.1131-1138, 2006.3
- 6) 松尾幸久,溝部有人,清宮理:トンネル内の車両火 災への耐火被覆材の効果に関する熱伝導解析,土木 学会論文集 No.802/V, pp.97-108, 2005 年11 月
- 7) 土木学会:コンクリート構造物の耐火技術研究小委員会報告ならびにシンポジウム論文集, pp.29-62, 平成16年10月
- 8) 矢川元基:流れと熱伝導の有限要素法入門, pp.103-121,培風館, 1994.
- 9) 相原利雄: 伝熱工学, pp.7-17, 裳華房, 1994.
- 10) コンクリート標準示方書[施工編], pp.46, 土木学会, 2002.
- コンクリート標準示方書[構造性能照査編], pp.19-29, 土木学会, 2002.
- 日本道路協会:道路橋示方書・同解説V [耐震設計 編], pp.200, 平成14年3月
- 清宮理,園田恵一郎,高橋正忠:沈埋トンネルの設 計と施工,pp.72,技報堂出版,2002.

(2006年9月11日受付)