RC ラーメン高架橋の地震損傷イベント解析と地震損失評価

Damage event analysis and structural damage loss evaluation for a RC railway viaduct under seismic loading

前田 欣昌*,野口 聡*,大滝 健**,服部 尚道*,吉川 弘道***

Yoshimasa Maeda, Akira Noguchi, Takeshi Ohtaki, Hisamichi Hattori and Hiromichi Yoshikawa

*工修,東急建設(株),技術本部 土木技術部(〒150-8340 東京都渋谷区渋谷1-16-14) **工博,東急建設(株),技術本部 土木技術部(〒150-8340 東京都渋谷区渋谷1-16-14) ***工博,武蔵工業大学教授工学部 都市基盤工学科(〒158-0087 東京都世田谷区玉堤1-28-1)

This paper proposed an evaluation model of seismic damage loss (direct loss and indirect loss) of a multi-hinge structure which has a complicated damage process like a railway viaduct. In this model, structural damage event analysis with push-over nonlinear analysis is carried out, and systematical seismic loss evaluation, introducing the damage flag (delta variable), is performed. Using this model, we calculated the seismic damage loss of two different structures designed based on different design-criteria. As a result, quantitive differences in the damage loss between the two structures became clear.

Key Words: railway viaduct, seismic damage event analysis, seismic loss evaluation, damage flag キーワード:鉄道ラーメン高架橋,地震損傷イベント解析,地震損失評価,損傷フラグ

1.はじめに

鉄道は我が国における主要な交通手段であり, RC ラ ーメン高架橋は都市部に多く用いられる鉄道施設とし て重要な役割を担っている.このような鉄道高架橋が地 震により損傷し,列車の運行が不能となった場合,事業 者にとって極めて大きな損失が発生する.

事業者にとっての損失は,被災した構造物の復旧にか かる直接損失と,不通となった期間の営業的な損失であ る間接損失の2つによって評価される¹⁾.

このような損失を最小限に抑えることが地震リスク マネジメントにおいて最も重要であるが,地震動のよう に発生規模と発生確率の確定が困難な現象に対し,確定 論的に損失を決定することは合理的でないことから,筆 者らは,確率論的アプローチによる鉄道高架橋の損失期 待値を提案している²³³.確率論手法を用いる場合,地震 規模に対する鉄道高架橋の損傷状況を適切に予測する とともに,起こりうる損傷状況を全て再現し,損傷状況 に対する損失を1:1 で算定する必要がある.しかしなが ら,全ての損傷状況を予想し,それに対する損失を体系 的に算出する方法は,現時点では提案されていない.

本研究では,鉄道 RC ラーメン高架橋のように,地震 規模によって損傷箇所と損傷程度が変化する多ヒンジ 系構造物を対象として,損傷進展状況を構造損傷イベン トという指標を用いて整理し,さらに,各部材の損傷状 況を表す損傷フラグを定義して,各損傷イベントに対す る地震損失をシステム的に評価する手法を構築するこ とを試みた.本研究のフローを図-1に示す.

また,本手法を用いて,設計基準年度が異なる2種類の構造物を対象とした地震損傷イベント解析を行い,地 震損失評価の試算を行った.

図 - 1 本研究のフロー

2.地震損傷イベント解析

地震により鉄道ラーメン高架橋が段階的に損傷を受ける現象を予測する方法は各種考えられるが,本研究では,現行の鉄道構造物設計標準・同解説⁴⁾(以下,鉄道標準)に準拠し,非線形2次元平面骨組によるプッシュオーバー解析(単調新増静的非線形解析)を用いて,構

造物の非線形荷重変形曲線(P- 曲線)と構造物の段階的な損傷状況を求めた.

柱や梁などの RC 部材の損傷は 図 - 2 に示すような4 直線 (tetra linear model) M - モデル(またはM - モ デル)により表すことができる.本論では, RC 部材の 変曲点を部材損傷イベント(member damage event)と定 義し,部材損傷イベントは,図-2 に示すように,鉄道 標準⁴⁾に準拠して, Y(鉄筋降伏),M(最大荷重時),N(終局時)の3イベントとした.

構造物全体系の段階的な損傷は,各部材の損傷イベントを逐次累加することにより求めることができる.このような構造物の損傷を構造損傷イベント(structural damage event)と定義する.構造損傷イベントは,図-3に示すように,構造物のプッシュオーバー解析から得られた各部材の損傷イベントを発生順に付番したものとなる.

図-2 部材損傷イベントと部材損傷レベルの関係4)

図-3 構造損傷イベントと構造損傷レベルの関係

3. 地震損失評価の基本構成モデル

地震損傷イベント解析により得られた非線形特性(*P*-曲線)と構造損傷イベントの発生過程をもとに,構造物の被災によって発生する地震損失(直接損失と間接損失)の算定モデルを提案する.

地震損失の算出モデルは,構造物の規模や部材寸法に 関係なく,汎用性と合理的なデータベース性を持たせる ことを目的として,数量化理論第 類の理論⁵⁰の枠組み を準用した.数量化理論第 類は,ある現象に関連する 複数の項目(アイテム)中の区分(カテゴリー)の反応 特性が測定されている時,それらの質的データにもとづ いて目的の特性数量を算出する手法である.本論では, 基本構成データとなる,アイテム,カテゴリー,現象数, および反応特性を次のように定義した.なお,反応特性 には前述した損傷フラグを採用している.

(1) アイテム

本論ではアイテムとして以下の2種類を定義した.

アイテム1:部位種別 *i =1 ~i_{max}*

アイテム2:損傷部材 j=1~jmax

アイテム1はRC ラーメン高架橋の損傷を受けうる部 位の種類に,構造物が大きく損傷した際に必要となる仮 受支保工を加えた項目であり,図-4に示す高架橋を例 にとれば, imax =4(柱下端,柱上端,横梁端部,仮受支 保工)となる.

アイテム2は,柱や梁等の全ての塑性ヒンジ箇所に仮 受支保工を加えたものであり, *j_{max}* は塑性ヒンジ箇所数 +1(仮受支保工)となる.図-4に示す高架橋では,*j_{max}* =7(柱1下端,柱1上端,柱2下端,柱2上端,梁左 端部,梁右端部,仮受支保工)となる.

(2) カテゴリー

アイテム中のカテゴリーとして,部材損傷レベルkを 定義した.部材損傷レベルは,現行の鉄道標準⁴⁾に準拠 して*k* =1~4とした(図-2).

(3) 現象数

現象数は,各地震動に対する損傷現象数を示し,構造損 傷イベント数に置き換えられる.ここで,構造損傷イベ ントを $n = 1 \sim n_{max}$ と定義する. n_{max} は n_{max} ($j_{max} = 1$)× k_{max} (ただし, $k_{max}=4$)となる.

(4) 反応特性(損傷フラグ)

プッシュオーバー解析で得られた段階的な構造損傷 イベントの反応を表す指標として,損傷フラグ(変数) を定義する. 変数は,1か0かを与えるものであり, 式(1)のように示される.

図 - 4 アイテム説明図

損傷部材

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	[7-4テム1] 部位の種別(i)	[7-4] 漫儀部材(I)	【カテゴリー】 k=1 k=2 助材の損傷フベル(x) k=1 k=2	0 0(1,1,1) 0(1,1,2)	1 1(1,1,1) 1(1,1,2)	2 2(1,1,1) 2(1,1,2)	[現象] [現象] : : : : : : : : : : : : : : : : : : :	イベント(n) n (1.1.1) n(1.1.2)	 Dmax nmax(1,1,1,: nmax(1,1,1,2; nr	部材の補修数量(Q _{m(i,j,k})) Q _{m(1,1,1}) Q _{m(1,1,2} (データベース】 部材の補修費用(C _{(i,i,k})) C _{(i,1,1}) C _{(i,1,2}) C	
$ \left[i = 1 \right] \\ \left[i = 1 \right] \\$			k=3 k=4	0(1,1,3) 0(1,1,4	1(1,1,3) 1(1,1,4	2(1,1,3) 2(1,1,4		n(1,1,3) n(1,1,4	max (1,1,3; nmax (1,1	Q _{m(1,1,3)} Q _{m(1,1}	2(1,1,3) C(1,1,4)	Taxa T
	Ш.		k=1	4) 0(1,2,1)	4) 1(1,2,1)	4) 2(1,2,1)		4) n(1,2,1)	1,4 nmax (1,2,1)	.4) Q _{m(1,2,1)}) C _(1,2,1)	F
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		j=2	k=2	0(1,2,2)	1(1,2,2)	2(1,2,2)		n(1,2,2)	nmax (1,2,2)	$Q_{m(1,2,2)}$	C _(1,2,2)	F
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			k=3 k	0(1,2,3) 0	1(1,2,3) 1	2(1,2,3) 2		n(1,2,3) n	 nmax(1,2,3; nm	Q _{m(1,2,3)} G	C _(1,2,3) C ₍	F
i=2 ··· i ··· i ··· i ··· ··· i ···		-	(=4 ·	. (1,2,4)	(1,2,4)	(12.4)		(1,2,4)	ax(1,2,4	Am(1,2,4)	1,2,4)	
2 · · · · · · · · · · · · · · · · · · ·	<u>."</u>	:	:	:	:	:		:	 :	:	:	
· · </td <th></th> <th></th> <td>-</td> <td></td> <td>:</td> <td>:</td> <td></td> <td>:</td> <td>:</td> <td></td> <td></td> <td></td>			-		:	:		:	:			
i i i i i i i i ··· j			:	:	:	:		:	:	:	:	
initial induction ···· ···· initial ···· ···· ···· ···· ···· ···· ···· ···· ···· ···· ···· ···· ···· ···· ···· ···· ···· ···· ···· ···· ···· ···· ···· ····· ···· ···· ···· ···· ···· ····· ···· ···· ····· ···· ···· ····· ···· ···· ····· ···· ····· ····· ···· ····· ····· <tr< td=""><th></th><th>- -</th><td>*</td><td>0(I,j,k)</td><td>1(1,1,1)</td><td>2(I,j,k)</td><td></td><td>n(I,j,k)</td><td> nmax (1,j,k)</td><td>$\mathbf{Q}_{m(1,j,k)}$</td><td>C_(1,j,k)</td><td>F</td></tr<>		- -	*	0(I,j,k)	1(1,1,1)	2(I,j,k)		n(I,j,k)	 nmax (1,j,k)	$\mathbf{Q}_{m(1,j,k)}$	C _(1,j,k)	F
····· i=inax ····· ····· ····· ····· ····· ···· ····· ····· ····· ···· ····· ····· ····· ···· ····· ····· ····· ···· ····· ····· ····· ···· ····· ····· ····· ···· ····· ····· ····· ···· ····· ····· ····· ···· ····· ····· ····· ···· ····· ····· ····· ···· ····· ····· ····· ···· ····· ····· ····· ···· ····· ····· ····· ···· ····· ····· ····· ···· ····· ······ ····· ···· ····· ······ ······ ····· ······ ······ ······ ····· ······ ······ ······ ····· ······ ······ ······ ····· ······ ······ ······ ····· ······ ······ ····· ······· ·······		:	:	÷	:	:		÷	:	:	:	
····································	:	:	:	:	÷	:		:	 :	:	:	
j=jmax j=jmax j=jmax j=jmax k=1 k=2 k=3 k=4 k=1 k=2 k=4 initial initinitial initial initial initial init		:	:	:	:	:		÷	 :	:	:	
j=jmax 強調整 必要位 j=jmax 確<			k=1	0(imax,b,1)	1 (imax,b1)	2 (imax,b1)		n (imax,b1)	nmax (imax,b,1) n	Qm(imax,b,1)	C _(imax,b,1) C	F
K=3 K=4 防衛政広 A K=3 K=4 協士 4 4 (Innuc,5) 0(Innuc,5) 0(Innuc,5) 1(Innuc,5) 1(Innuc,5) 2(Innuc,5) 1(Innuc,5) 1(Innuc,5) 1(Innuc,5) 1(Innuc,5) n(Innuc,5) n(Innuc,5) 1(Innuc,5) 1(Innuc,5) 1(Innuc,5) n(Innuc,5) n(Innuc,5) 1(Innuc,5) 1(Innuc,5) 1(Innuc,5)	i=i _{max}	j=j _{max}	k=2	0 (imax,b,2)	1 (imax,b2)	2(imax,b2)		n (imax,b2)	 max(imax,b,2) n	Q _{m(max,b,2})	C (imax,b,2) C	
Ket 心恍惚 (Imaxkel) 1 (Imaxkel) 1 (Imaxkel) 1 (Imaxkel) 1			k=3	0 (imax,b,3)	1 (imax,b3)	2(imax,b3)		n (imax,b3)	max (imax,b,3) nr.	Qm(imax,b,3)	C (imax,b,3) C	
			k=4	0 (imax,b,4)	1 (imax,b4)	2(imax,b4)		n(imax,b4)	nax(imax,b,4)	Qm(imax, b, 4)	(imax,b,4)	
後 後 後 2 2 2 3 4 4 5 5 5 5 5 5 5 5 5 5 5 5 5		換算 弾性震度	:	÷	÷		:	 ÷				
术ネ		丙烯 ^L L		:	÷	÷		÷	 ÷			
		構造物の 補修費用		EC.	EC.	${\sf EC}_2$		с ЕС	 EC			
補給 構成 モT モT モT モ モ モ モ モ モ ロ の の の の の の の の の の の の の		構造物の 補修日数		ET_0	ET,	ET_2		ET,	 ETnmax			

表-1 地震損失評価の基本構成モデル

変数を使用することにより,ある構造損傷イベント において,アイテム中のカテゴリー(損傷レベル)がど のような状態にあるのかを把握することができ,また, この変数を用いて,後述する直接損失ならびに間接損失 を合理的,システム的に算出することが可能となる.

以上の基本となる構成データを体系的に表現すると 表 - 1 のようになる.

4. 直接損失の算定手法

本論では,直接損失は被災した構造物の復旧に要する 費用とみなし,復旧とは原状に復する補修を意味する.

4.1 部材損傷レベルに応じた補修方法の設定

損傷した部材の補修方法は,部材損傷レベルに応じて 表 - 2[®]のように設定した.なお,表 - 2 に示されていな い部材の補修方法については,文献 6 を参照されたい. また,仮受支保工は,任意の部材が損傷レベル4 に達し た時点で必要になるものとした⁶⁾.

補修数量は,部材の損傷範囲を塑性ヒンジ領域 1D 区間(D:部材断面高さ)と仮定すれば,部材の形状や配筋状況から事前に求めることができる⁷.

部位	損傷レベル	損傷状況	補修方法
	1	軽微な曲げひび割れ	補修しない
	2	軸方向鉄筋の降伏 曲げひび割れとせん断ひび割れ	足場工 ひび割れ注入
上層梁	3	かぶりコンクリートの刺離 軸方向鉄筋の座屈	 軌道徹去 足場工 ひび割れ注入 鉄筋整正 かぶりコンクリート修復 橋面防水 工軌道復旧
	4	内部コンクリートの損傷 軸方向鉄筋の破断 帯鉄筋の破断	スラブの仮受け 軌道微去 足場工 コンクリート除去 鉄筋取替え コンクリート打設 橋面防水 橋面防水 工軌道復旧
	1	軽微な曲げひび割れ	補修しない
	2	軸方向鉄筋の降伏 曲げひび割れとせん断ひび割れ	足場工 ひび割れ注入
柱上端部	3	かぶりコンクリートの剥離 軸方向鉄筋の座屈	足場工 ひび割れ注入 鉄筋整正 かぶりコンクリート修復
	4	内部コンクリートの損傷 軸方向鉄筋の破断 帯鉄筋の破断	スラブの仮受け 足場 <u>「</u> コンクリート除去 鉄筋取替え コンクリート打設

表-2 部材の損傷レベルと補修方法の関係の

4.2 部材損傷レベルに応じた各部材の補修費用

各部材の各損傷レベルに応じた補修費用を式(2)で表 される補修費用データベース $C_{(i,j,k)}$ で定義する. $C_{(i,j,k)}$ は, 損傷レベルに応じた補修工種 $m_{(i,j,k)}$ の補修数量 $Q_{m(i,j,k)}$ に単 価 $P_{m(i,j,k)}$ を掛け合わせ,累加することにより算出する. これらは,補修数量が既知であるため,部材の損傷レベ ルに応じた事前のデータベース化が可能である(表 - 1).

$$C_{(i,j,k)} = \sum_{m=1_{(ijk)}}^{m_{\max(ijk)}} Q_{m(i,j,k)} \cdot P_{m(i,j,k)}$$
 (2)

ここに ,

- *Q_{m(i,j,k)}*: 部位種別 *i* の損傷部材 *j* が損傷レベル *k* に 該当した時の補修に必要な工種 *m* の数量
- *P_{m(i,j,k)}*: 部位種別 *i* の損傷部材 *j* が損傷レベル *k* に 該当した時の補修に必要な工種 *m* の単価

4.3 各構造損傷イベントの補修費用

構造損傷イベントnにおける構造物の補修費用 ECⁿは, 式(3)に示すように,補修費用データベース C_{(i,i,k})に構造損 傷イベント解析から定めた損傷フラグ 変数を掛け合 わせることにより,算出することができる.

$$EC^{n} = \sum_{i=1}^{i_{\max}} \sum_{j=1}^{j_{\max}} \sum_{k=1}^{4} \left(\delta^{n}_{(i,j,k)} \cdot C_{(i,j,k)} \right)$$
(3)

以上の手法により,全ての地震規模に応じた構造物の 補修費用を一義的に算出することが可能である.

5. 補修日数の算定手法

5.1 補修日数の算定方針

本論における補修日数は,列車を運休させて行う補修 工事日数を示している.このような補修日数の算出にあ たり,部材の損傷レベルに応じて列車の運休要否を定め, 補修日数に反映させた.

鉄道標準⁴では,構造物の耐震性能を表-3 のように 定義し,構造物の耐震性能に対する部材損傷レベルの制 限値の目安を表-4のように定義している.

本論では,早期復旧に対する重要性を勘案し,全ての 部材が耐震性能 を満足していれば,列車を運行させな がら補修できると判断し,耐震性能 を満足できない場 合に,運休を伴う補修を行うものと定義した.各部材の

表-3 構造物の耐震性能 4)

耐震性能	:地震後にも補修せずに機能を保持でき,かつ過大な変位を生じない
耐震性能	: 地震後に補修を必要とするが , 早期に機能が回復できる
耐震性能	:地震によって構造物全体系が崩壊しない

表 - 4 ラーメン高架橋の耐震性能と部材の損傷レベルの関係4)

樟	请造物	耐震性能	耐震性能	耐震性能
	上層梁・地中梁	1	2	3
部材の	その他の梁	1	3	4
損傷レベル	柱	1	3	3
	杭	1	2	3

表-5 補修を行う場合の列車運休要否判定

	部材の損傷レベル													
	1 2 3 4													
上層梁・地中梁			×	×										
その他の梁				×										
柱				×										
杭			×	×										
: 運	:運休不要 × :要運休													

損傷レベルに応じた列車運休要否判定を表 - 5 に示す.

各構造損傷イベントにおける補修日数を算定する際 には、先に述べた損傷フラグ $n_{(i,j,k)}$ に表 - 5 の特性を反映 させた損傷フラグ $n_{(i,j,k)}$ を定義し、使用する.

5.2 部材損傷レベルに応じた各部材の補修日数

補修日数の算定にあたっては,補修費用を算定した場合と同様に,式(4)で表される各部材の部材損傷レベルに応じた補修日数データベース $T_{(i,j,k)}$ を定義する.これらも,部材の形状や配筋等各工種の施工数量 $Q_{m(i,j,k)}$ が既知であれば,それらを施工効率 $R_{m(i,j,k)}$ (標準作業人数/歩掛り)で除算することにより求められるデータであり,事前にデータベースとして格納することができる(表-1).

$$T_{(i,j,k)} = \sum_{m=1(ijk)}^{m_{\max(ijk)}} \left(Q_{m(i,j,k)} / R_{m(i,j,k)} \right)$$
(4)

ここに ,

- *T*_(*i*,*j*,*k*): 部位種別*i*の損傷部材*j*が損傷レベル*k*に 該当した時に必要な補修日数
- Q_{m(i,j,k)}: 部位種別 i の損傷部材 j が損傷レベル k に 該当した時の補修に必要な工種 m の数量
- R_{m(i,j,k)}: 部位種別 i の損傷部材 j が損傷レベル k に 該当した時の補修に必要な工種 m の施工効率

5.3 各構造損傷イベントの補修日数

複数の部材が損傷するラーメン高架橋の補修におい て,最短補修日数を算定するために,アローダイアグラ ム⁸によってクリティカルパスを求め,補修日数とした. 図-5に,杭基礎形式のラーメン高架橋の補修日数算定 用アローダイアグラムを示す.

図 - 5 最短補修日数算定用アローダイアグラム

工事には,あるグループが完了しない限り,次工程に 進めないグループが存在する.鉄道ラーメン高架橋の場 合,このようなグループは「仮受支保工」,「地中部施工」, 「地上部施工」に分けられる.これらのグループを工程 種別 h と定義した(*h=1 ~ h_{max}*, ただし, *h_{max} 3*).

各工程種別内のクリティカルパスは,そのグループ内の部位種別の最大補修日数と考えられる.そこで,式(5) によって部位種別毎の最大補修日数を求め,さらに,表 -6により部位種別を工程種別に割り当てたのち,式(6) により,各工程種別内の最大日数を累加して,構造損傷 イベントnにおける補修日数EIⁿを算出した.

$$T_{i}^{n} = \max_{j=1}^{j_{\max}} \sum_{k=1}^{4} \left(\delta^{n'}_{(i,j,k)} \cdot T_{(i,j,k)} \right)$$
(5)

$$ET^{n}=\sum_{h=1}^{h_{\max}}T^{n}{}_{h}$$

部位種別 i		<u>工程種別 h</u>
杭頭部)	
縦地中梁端部	$\left \right\rangle \left \right\rangle$	地中部施工
横地中梁端部		
柱下端)	
柱上端		地上家族工
縦梁端部		ᅸᄜᆂᇚᄤᆂ
横梁半部	J	
仮受支保工	\downarrow	仮受支保工

以上の手法により,構造物の全ての損傷状況に対する 最短補修工事日数の体系的算定が可能となる.

6. 間接損失の算定手法

本論の間接損失は,列車が運行不能となった期間(不 通日数)中の収入機会の逸失による営業的な損失とする.

6.1 不通日数の算定手法

不通日数 TT"は,式(7)に示すように,補修日数 ET"に 加え,工事着手までの準備日数 PT"と,補修完了後に行う列車安全走行性の検査日数 IT"を考慮する必要がある.

$$TT^{n} = PT^{n} + ET^{n} + IT^{n}$$
⁽⁷⁾

ここに, PTⁿ:準備日数 ETⁿ:補修日数 ITⁿ:検査日数

準備日数 PT^{*}は,事前の資材調達や資材運搬経路の確保等地震リスクに対する事前の取組みにより,短期間化が可能となるものである.また,検査日数 IT^{*} については,事業者が定めたスケジュールに負う項目である.PT^{*} および IT^{*}は,現時点で定量的に評価することは困難であるが,間接損失を評価する上で事業主体の視点から今後検討すべき重要な項目である.

6.2 間接損失の算定手法

各構造損傷イベントの間接損失 IC^{*}は,式(8)により算 出する.

$$IC^{n} = TT^{n} \times N_{0} \times C_{0} \tag{8}$$

ここに ,

(6)

- N₀:1日当り平均利用者数(例えば文献9)など から得られる)
- C₀:利用者一人当たりの平均乗車賃で 年間路線収入/年間利用者数で表される

7.数値解析シミュレーション

7.1 対象構造物

対象構造事例 として,設計基準年代の異なる2種類の構造物を取り上げた.鉄道標準平成4年制定に準拠した構造物(以下,平成4年高架橋)と,平成16年制定に準拠した構造物(以下,平成16年高架橋)である.

平成4年高架橋は,直接基礎2柱式5径間連続ラーメン高架橋¹⁰であり,平成16年高架橋は2杭2柱式5径間連続ラーメン高架橋¹¹⁰である.各高架橋は,設計計算例として発刊された文献を準用したため,異なる基礎形式となった.両者を代表して,平成4年高架橋の一般図

を図 - 6 に示す. なお,両者の配筋,地盤条件や設計対象とした地震動は各高架橋設計例¹⁰¹¹⁾を参照されたい.

7.2 地震損傷イベント解析

対象構造物2事例の線路直角方向および線路方向について、プッシュオーバー解析を行い、地震損傷イベント

を同定するとともに,構造物の荷重変形曲線を求めた. 2 事例のうち平成4年高架橋のプッシュオーバー解析モ デル図を図-7に示す.解析モデルは,線路方向の梁を *M*-モデル,柱と線路直角方向の梁を材端ばねを有する *M*-モデルとした.なお,*M*-モデルおよび*M*-モデル を定義する際,部材がせん断破壊をしないかぎり,部材

	部位種別i 柱下端														木	ÈΤ	端	í													ħ	黄粱	Ę								応答	等	価	直接	不通	間接			
	铝/恒3	27.47	立て	1	2 1	۵		-		T				立て	t t	11	17	-			- -					立	7.17	1 4	8				Т				Т			T				変位	水	平	損失額	日数	損失額
火 中	頂雨	[CPrue	пb,	21	3,1	9	_	-	-	┢	-	-	1	미	125	,	.,		_	-	_	_	_		_	-	P 42	4,0	5	_	-	_	+	- 1-	_	-	-			_	_	-	-	resp	震	度	EC ⁿ	ET^{n}	TT^{n}
欧	部材損傷	易レベルj	1	2	3	4								1	2	3	4									1	2	3	4															(mm)	kh	1e	(万円)	(日)	(万円)
古		0	1	0	0	0								1	0	0	0									1	0	0	0															0	0		0	0	0
鱼	_構 イ	1	1	0	0	0								1	0	0	0									0	1	0	0															54	0.34	45	99	0	0
方	濃べ	2	0	1	0	0								1	0	0	0									0	1	0	0															63	0.40	03	147	0	0
向	置ン	3	0	1	0	0								1	0	0	0									0	0	1	0															158	0.82	22	3051	9	18000
1.3	傷卜	4	0	0	1	0								1	0	0	0									0	0	1	0															189	0.9	19	3092	9	18000
	°‴ n	5	0	0	1	0								1	0	0	0									0	0	0	1															195	0.93	36	4253	13	24000
		6	0	0	0	1								1	0	0	0									0	0	0	1															225	1.09	96	4374	13	26000
	部位	種別i					柱	下	端									枯	ÈΤ	:端	1														従욎	Ę								応答	等	価	直接	不通	間接
	铝/每3	27.47	立て	5	1 0	1 1	217大	ter	75	立	7 # 7	66	72	立て	***	52	22	立 な	t 75	0 7	76	立(r	***	1 7	70	部材2 49 部材9 42 部材12 39 部材10 32 部材22 2													20	変位	水	平	損失額	日数	損失額				
	頂雨	[CPruc	-UD,	20	4,0	4 6	21942	100	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	미	1942J	1.	,12	비미	125	JZ,1	52	, do	12] J	0,1	10	40	12) (,4,1		미	12	2,4	9	90	12J 3	,42		212 Y	912	2,30	미	12	19,0	2	sh de	122	,29	resp	震	度	EC ⁿ	ET^{n}	TT^{n}
	部材損傷	哥レベルj	1	2	3	4	1 2	2 3	3 4	1	2	3	4	1	2	3	4	1	2	3	4	1	2	3	4	1	2	3	4	1	2	3 4	4	1 2	2 3	3 4	1	2	3	4	1 2	2 3	4	(mm)	kh	1e	(万円)	(日)	(万円)
		0	1	0	0	0	1 0) (0 0	1	0	0	0	1	0	0	0	1	0	0	0	1	0	0	0	1	0	0	0	1	0	0 (0	1 () () 0	1	0	0	0	1 0) 0	0	0	0)	0	0	0
		1	1	0	0	0 '	1 0) (0 0	1	0	0	0	1	0	0	0	1	0	0	0	1	0	0	0	1	0	0	0	0	1	0 0	0	1 () () 0	1	0	0	0	1 () 0	0	46	0.3	50	46	0	0
		2	1	0	0	0	1 0) (0 0	1	0	0	0	1	0	0	0	0	1	0	0	1	0	0	0	1	0	0	0	0	1	0 (0	1 (0 0) 0	1	0	0	0	1 0) 0	0	73	0.5	56	105	0	0
		3	1	0	0	0	1 0) (0 0	1	0	0	0	1	0	0	0	0	1	0	0	0	1	0	0	1	0	0	0	0	1	0 (0	1 (0 0) 0	1	0	0	0	1 0) 0	0	74	0.56	63	164	0	0
		4	1	0	0	0 0) 1	(0 0	0	1	0	0	1	0	0	0	0	1	0	0	0	1	0	0	1	0	0	0	0	1	0 0	0	1 () (0 0	1	0	0	0	1 0) 0	0	79	0.6	02	196	0	0
		5	1	0	0	0 0) 1	1) ()	0	1	0	0	1	0	0	0	0	1	0	0	0	1	0	0	0	1	0	0	0	1	0 (0	1 () () 0	1	0	0	0	1 () 0	0	80	0.60	09	242	0	0
火中		6	0	1	0	0 (0 1	(0 0	0	1	0	0	1	0	0	0	0	1	0	0	0	1	0	0	0	1	0	0	0	1	0 (0	1 () () 0	1	0	0	0	1 () 0	0	83	0.6	32	257	0	0
飲		7	0	1	0	0 0	0 1	(0 0	0	1	0	0	1	0	0	0	0	1	0	0	0	1	0	0	0	1	0	0	0	1	0 (0	1 (0 0) 0	0	1	0	0	1 0) 0	0	95	0.72	20	303	0	0
山上	. <u></u> # 1	8	0	1	0	0 (0 1	(0 0	0	1	0	0	0	1	0	0	0	1	0	0	0	1	0	0	0	1	0	0	0	1	0 (0	1 () () 0	0	1	0	0	1 () 0	0	101	0.76	60	362	0	0
「」」	増べ	9	0	1	0	0 0	0 1	1 (0 0	0	1	0	0	0	1	0	0	0	1	0	0	0	1	0	0	0	1	0	0	0	1	0 (0	1 (0 0	0 0	0	1	0	0	0 1	0	0	108	0.80	04	408	0	0
1-1	置ン	10	0	1	0	0 0	0 1	(0 0	0	1	0	0	0	1	0	0	0	0	1	0	0	1	0	0	0	1	0	0	0	1	0 (0	1 (0 0) 0	0	1	0	0	0 1	0	0	130	0.92	29	422	0	0
	「」 但	11	0	1	0	0 (0 1	() (0	1	0	0	0	1	0	0	0	0	1	0	0	0	1	0	0	1	0	0	0	1	0 (0	1 () () 0	0	1	0	0	0 1	0	0	134	0.9	50	436	0	0
	1990 N	12	0	1	0	0 (0 0) 1	1 0	0	0	1	0	0	1	0	0	0	0	1	0	0	0	1	0	0	1	0	0	0	1	0 (0	1 (0 0	0 0	0	1	0	0	0 1	0	0	138	0.9	71	463	0	0
		13	0	0	1	0 0	0 0) 1	1 0	0	0	1	0	0	1	0	0	0	0	1	0	0	0	1	0	0	1	0	0	0	1	0 0	0	1 (0 0	0 0	0	1	0	0	0 1	0	0	149	1.02	25	476	0	0
1		14	0	0	1	0 (0 0) () 1	0	0	1	0	0	1	0	0	0	0	1	0	0	0	1	0	0	1	0	0	0	1	0 (0	1 (0 0	0 0	0	1	0	0	0 1	0	0	167	1.1(08	1673	11	22000
		15	0	0	1	0 (0 0) () 1	0	0	1	0	0	1	0	0	0	0	0	1	0	0	1	0	0	1	0	0	0	1	0 (0	1 () () 0	0	1	0	0	0 1	0	0	168	1.1	13	1713	11	22000
		16	0	0	1	0 0	D C) () 1	0	0	1	0	0	1	0	0	0	0	0	1	0	0	0	1	0	1	0	0	0	1	0 (0	1 (0 0	0 0	0	1	0	0	0 1	0	0	169	1.1	17	1754	11	22000
1		17	0	0	1	0 0	0 0) () 1	0	0	0	1	0	1	0	0	0	0	0	1	0	0	0	1	0	1	0	0	0	1	0 (0	1 0	0 0	0 0	0	1	0	0	0 1	0	0	172	1.13	30	1794	11	22000
		18	0	0	1	0 0	0 0) () 1	0	0	0	1	0	0	1	0	0	0	0	1	0	0	0	1	0	1	0	0	0	1	0 (0	1 (0 0	0 0	0	1	0	0	0 1	0	0	177	1.1	52	1808	11	22000
1		19	0	0	0	1 (0 0) () 1	0	0	0	1	0	0	1	0	0	0	0	1	0	0	0	1	0	1	0	0	0	1	0 0	0	1 (0 0	0 0	0	1	0	0	0 1	0	0	184	1.18	82	1862	11	22000
1		20	0	0	Λ	1 (1	0	1 n	1 n	1	<u> </u>	\cap	\cap	1	\land	Δ	Δ	1	\cap	\cap	\land	1	\cap	1	\cap	\cap	Δ	1		n i	1 (0	1	0	0	n 1		0	220	1 3/	57	1002	11	22000

表-7 構造損傷イベントと部材損傷レベルの関係(平成4年高架橋)

損傷レベルが4に達しても、急激な耐力低下に至らないと判断し、損傷レベル3の延長線の性能を保持するものとした.

得られた各部材の降伏順序を図 - 8 に,荷重変形曲線 を構造損傷イベントと共に図 - 9 に示す.図 - 9 中の数 字は,損傷の発生した点における部材番号 損傷レベル (水平変位,水平震度)を示している.また,式(9) で表されるエネルギーー定則に基づいて,弾性応答を仮 定した場合の等価水平震度 Khe を合わせて示した.

$$\delta_{resp} = \frac{1}{2} \left\{ \left(\frac{khe}{khy} \right)^2 + 1 \right\} \delta_y \tag{9}$$

ここに,

 khe:
 等価水平震度,
 khy:
 降伏震度

 y:
 降伏变位
 rsp:
 応答变位

損傷フラグ を用いた各構造損傷イベントの部材損 傷レベル状態を表 - 7 に示す.

直角方向および線路方向ともに,梁降伏が先行するが, 最終的には,直角方向が柱と梁が損傷レベル4に達した が,線路方向は,梁の損傷レベルは2に留まり,柱のみ が損傷レベル4に到達する結果となった.

7.3 地震損失評価

損失額の算出にあたっては,地震動のような正負交番 載荷による損傷を損失額に反映させるため,左右対称の 部材が同じ部材損傷イベントとなるものとして算定し た.また,不通日数を算出する際の準備日数 PT^{*}と検査 日数 IT^{*}を表-8のように設定し,間接損失額を算出する 際の平均利用者数 N₀および平均乗車賃 C₀を表 - 9 のように仮定した .

このような条件の下,2種類の高架橋の各構造損傷イ ベントに対する直接損失額,不通日数および間接損失額 を,損傷フラグを用いた地震損失評価モデルを用いて電 算により算出した.両者を代表して,平成4年高架橋の 各構造損傷イベントの直接損失額,不通日数および間接 損失額を表-7に示す.

2 つの対象構造物の直接損失額,不通日数および間接 損失額について,各構造物の塑性率 _{nep}/ 、と等価水 平震度*khe*を横軸にとって整理した結果を図-10に示す.

図 - 10(a.1)および(a.2)から,構造物の段階的な損傷状況に対応した直接損失(補修費用)の増加状況が確認できるとともに,最終的な直接損失額はH4年高架橋が大きくなることが分かる.なお,図 - 10(a.1)の塑性率 _{resp} / ,が1~2の範囲において,H14年高架橋の直接損失額が,H4年高架橋のそれを上回っている.これは計算対象としたH14年高架橋が地中梁を含む杭基礎形式であり,補修する部材数が多くなったためである.

表 - 8 準備期間と検査期間の設定

部材損傷レベルkの最大値	1	2	3	4
準備期間PT ⁿ k	-	-	2日	2日
走行安全性検査期間IT ⁿ k	-	-	1日	1日

表-9 平均利用者数と平均乗車賃の設定

100.000人

200円

1日あたり平均利用者数N₀

1日あたり平均乗車賃C。

図 - 10 地震損失算定結果

図 - 10(b.1)および(b.2)から, 平成4 年高架橋は, 平成 14 年高架橋よりも不通となる塑性率あるいは等価水平 震度が小さく ,規模の大きな地震に対して不通となる確 率が高いものと判断できる,平成4年高架橋の直角方向 のみ不通日数が階段状に増加しているのは,このケース のみ複数の部材(柱と梁)が列車運休を伴う部材損傷レ ベルに達し、これ以外のケースはそのようなレベルに到 達した部材が1種類(柱)であったためである.さらに, 図 - 10(c.1)あるいは(c.2)によれば,最終的な間接損失額 が直接損失額に対して1桁大きくなっており,計算対象 とした高架橋が単独で損傷したと仮定した場合,鉄道の 利用状況によっては、大規模な地震に対して、補修費用 よりも営業損失の方が大きくなることが示されている. なお,一般にラーメン高架橋は複数連続して存在し,路 線にはトンネル等多様な構造物が存在する.したがって, 実質的な間接損失額の算定は、路線全体を対象として、 複数の構造物の復旧日数を考慮した上で求めることが 理想的である.

また,設計基準年代に着目すると,塑性率で整理した グラフから,損失が急激に増加するレベルの違いが見ら れ,また,等価水平震度kheで整理したグラフからは, 設計基準年代による差異が塑性率で整理した場合より も大きくなっていることから,構造物の設計年代による 地震エネルギー吸収能力あるいは降伏震度の違いが構 造物に与える影響が大きいことが確認できる.

5.まとめ

本研究で得られた知見を以下にまとめる.

1.本論文は, RCラーメン高架橋のような多ヒンジ系構造物を対象に, プッシュオーバー解析による構造損傷イベント解析と, 損傷フラグ(変数)を導入した地震損失評価 モデルを用いて,全ての地震規模に対する地震損失をシステム的かつ定量的に算出するモデルを提案した.

2.特に,対象としたラーメン高架橋のような高次不静定 構造の場合,複雑な崩壊過程を辿る.導入した損傷フラグ (変数)により,これをコンピューター上に整然かつシ ステマチックに格納することがき,かつ,構造特性はもち ろんのこと,直接損失(復旧費用),間接費用(不通日数) の3者に共有できることが大きなメリットである.

3.本手法は,地震損失を算出するための基本構成モデル であるため,ボックスカルバートなどラーメン高架橋以外 の構造物に対しても,崩壊過程が予測可能であれば適用で きる.

4.本論文は, プッシュオーバー解析のような非線形構造 解析, 工事積算など見積もり作業, アローダイアグラム手 法に代表される工程管理,の3者を合理的かつ有機的に構成したものである.これら3者は,これまで同一構造物を対象にしながら,全く別の部門が担当し,合理的な連携がないまま処理されてきたと言える.新設工事の場合,やむを得ぬことであるが,耐震性照査と地震リスク解析では同 ールーティンによって処理されることが望ましい.

5.本論での提案手法は,地震リスク解析の要素技術として活用される.すなわち,得られた水平震度と地震損失額の関係は,地震ロス関数に変換され,建設地点の地震八ザード曲線をもとに,地震リスク曲線または地震損失期待値として算出される.

6.鉄道は, RCラーメン高架橋以外に複数の構造物(トン ネル,ボックスカルバート,橋梁,土構造など)により構 成され,ネットワーク状に存在する.今後は,このような 各種構造物に対する補修日数と補修費用を本堤案手法に より算定し,鉄道ネットワークを考慮した地震損失を算出 する研究を進める予定である.

参考文献

- 1) 渡辺忠朋, 青島亘佐, 石澤友了ほか: コンクリート技術 シリーズ 地震作用に対するコンクリート構造物の性 能照査型設計, 社団法人土木学会, pp.217-252, 2005.9.
- 大滝健,服部尚道,前田欣昌,野口聡:鉄道ラーメン高 架橋の地震リスク解析と損傷期待値の算定 東急建設技 術研究所報,2006.
- 3) 服部尚道,大滝健,前田欣昌,野口聡,吉川弘道:鉄道 構造物の地震損傷期待値と地震リスクカーブの算定,日 本地震工学シンポジウム, Vol.12,2006.
- 4) (財)鉄道総合技術研究所:鉄道構造物等設計標準・同 解説(耐震設計),1999.10
- 5) 林知己夫監修, 駒澤勉著: 数量化理論とデータ処理, 朝 倉出版, pp.1-48, 1986.
- 6) 玉井真一, 笹谷輝勝, 渡辺忠朋: コンクリート構造物の 耐震性能とライフサイクルコスト, コンクリート技術シ リーズ コンクリート構造物の耐震性能照査, 社団法人 土木学会, pp.179-202, 2000.4
- 7) 渡辺忠朋: コンクリート技術シリーズ コンクリート構 造物の耐震性能照査技術,社団法人土木学会,pp.47-63, 2002.12.
- 8) 倉持茂, 早川洋文: PERT の実際, 筑波書房, 2001.4.
- 9) (財)運輸政策研究機構,国土交通省総合政策局監修: 都市交通年報
- 10) (財)鉄道総合技術研究所:限界状態設計法による設 計計算例 RC ラーメン高架橋, 1996.3.
- 11)(財)鉄道総合技術研究所:鉄道構造物等設計標準・ 同解説 コンクリート構造物 照査例 RCラーメン高 架橋,2005.3

(2006年9月11日受付)