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The use of horizontally curved steel multi I-girder bridges is dramatically increasing for 
highway bridges and interchanges during the past three decades. However, dynamic 
behavior of these bridges is more sophisticated and less understood than that of straight 
bridges. In addition, this bridge type has very small torsional stiffness so it can be easy to 
vibrate by external dynamic loadings. By these reasons, a series of horizontally curved 
steel twin I-girder bridges are carried out in detail by using FEM in this study not only to 
learn about the free vibration characteristics but also to improve these characteristics of 
this bridge type. Through these analyses, several stiffening structures are recommended. 
Key Words: Curved twin I-girder bridge, Natural frequency, Diaphragm,  

Lateral bracing, FEM 
 
 
 

1. Introduction 
 
During the last three decades, horizontally curved bridges 

have become an important component in modern highway 
systems as a viable option at complicated interchanges or 
river crossings where geometric restrictions and constraints 
of limited site space make extremely complicated to adopt 
standard straight superstructures 1 ), 2 ). Curved alignments 
offer, in addition, the benefits of aesthetically pleasing, as 
well as economically competitive construction costs with 
regard to straight bridges. Besides, the advancement in 
fabrication, erection technology and the availability of digital 
computers to carry out the complex mathematical 
computations of the structural analysis and design of such 
girders are also primary reasons contributing to the 
development of these horizontally curved bridges1). 

Among some superstructures utilized in horizontally 
curved bridges, the multi I-girder structures are commonly 
used because of the simplicity of their fabrication and 
construction, speed of erection as well as low cost for 
maintenance.   However, curvature of the bridges induces the 
combinations of bending and torsion happened in the girders, 
makes the behaviors of these curved bridges complicated. 
These I-girders have very little torsional stiffness, so it is easy 
to vibrate both torsionally and vertically. In addition, the wide 

girder spacing and simplified lateral bracing system cause 
many problems related to vibration serviceability due to 
external dynamic loads3). These undesired vibrations usually 
lead to fatigue damages in bridge members that are 
considered as one of big problems in maintenance and retrofit 
of bridges.  

In spite of the complexities in design and construction, 
very limited documentations on the study of horizontally 
curved bridges have been made available contrary to straight 
bridges. Significant investigations into the design and 
analysis of horizontally curved steel I-girder bridges began 
only in the late 1960s when the Federal Highway 
Administration (FHWA) in United States formed the 
Consortium of University Research Teams (CURT) project, a 
large-scale research one funded by 25 states2). The work 
eventually led to publication of the Guide Specifications for 
Horizontally Curved Highway Bridges in 1980 which was 
subsequently updated in 1993 and 2003. In Japan, researches 
involved a number of single girder and girder component 
experimental studies coupled with analytical works 
developed the Guidelines for the Design of Horizontally 
Curved Girder Bridges published by the Hanshin Expressway 
Public Corporation in 19884). Since then, the horizontally 
curved bridges have been studying theoretically and 
experimentally in many universities. Nevertheless, the 
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studies on free vibration characteristic of horizontally curved 
bridges are still limited. H.Maneetes and D.G.Linzell 5 ) 
investigated the effects of cross-frame and lateral bracing 
parameters on the structure’s free vibration response of a 
single-span, non-composite, curved I-girder bridge by both 
experiments and FEM analyses. These parametric studies 
provided influential parameters affecting dynamic response 
of the system. A beam finite element formulation for free 
vibration analysis of horizontally curved steel I-girder bridges 
based on Kang and Yoo’s thin-walled curved beam theory 
was proposed by Ki-Young Yoon et al.6). Each node of this 
element possesses seven degrees of freedom including the 
warping one. This numerical formulation was extensively 
carried out the free vibration analyses of curved bridges 
considering the effects of curvature, boundary condition, 
modeling method, and degrees of freedom of cross-frame 
which provided invaluable information. Most of these papers 
used simple elements or not enough number of curvatures to 
have a clear look on dynamic response of curved bridges. 

And although changing natural frequencies of a structure 
is an effective way to mitigate its vibrations, only a few 
papers dealing with this problem have been published in 
literature. Presented herein are a numerous investigations of a 
horizontally curved twin I-girder bridge during free vibration 
by using 3-D finite element method of MSC/Nastran. These 
investigations are not only to enhance the understanding 
about free vibration characteristics but also to find out the 
methods improving these characteristics of the bridge. 
Through this study, several stiffening structures are 
recommended for bridge designing or retrofitting.   

 
2. Geometry of the studied bridges 

 
The original bridge chosen in this study is a simply 

supported, horizontally curved, composite steel twin I-girder 
one whose span, which is the length of the centerline between 
two main girders, is fixed as 50m. Several radii of bridge 
measured from the origin of the circular arc to the centerline 
of the bridge deck are considered to take into account the 
effects of curvature. Thus, length of the two main girders 
varies in accordance with the chance of bridge’s curvature; 
whereas, the total mass of the bridge remain unchanged. The 
two main I-girders are 3m deep and spaced transversely at 
6m. These main structural members are tied together by a 
reinforced concrete slab which acts compositely with the 
girders and transverse steel members. The transverse 
members are radial cross-beams which are spaced equally 
along the span. Basic geometric properties and cross-section 
layout and of the studied bridges are presented in Table 1 and 
Fig. 1, respectively. 

 

3. Finite element modeling 
 
Proper modeling of finite elements is a key in finite 

element analyses, it is usually considered in the very first 
stage of any problems. In addition, bridge is a hybrid complex 
structure composed by several structural components with 
different material behaviors. So to get reliable results, 
numerical convergent tests of free vibration analyses are 
carried out in this section. The numerical free vibration 
results of the studied bridge with 100m radius of curvature are 
examined with the following categories: (1) mesh size; (2) 
element type and element order; and (3) mass formulation.  

 
(1) Mesh size 

 
Four different mesh sizes considered in these convergent 

tests are shown on Fig. 2 along with their model names. It can 
be observed that the mesh size of the latter is two times 
smaller than that of the former one. And the latter mesh 
refinement is performed by subdividing the former mesh, so 
the former mesh is embedded in the latter mesh. So the mesh 
of Model-D is the finest one which is eight times smaller than 
that of Model-A – the coarsest. 

 
(2) Element type and order 

 
In bridge detailed analyses, the bridge deck is usually 

modeled by solid or shell elements7). Each type of elements 
has its own advantages and also disadvantages. In this study, 
according to the geometry of the bridge deck, hexagonal solid 

Tab1e 1 Basic geometric properties of the original bridge 
 

Span length [m] 50  
Deck width x thickness [m] 10.2 x 0.3 
Dimensions of the main girders  

[mm] 
WEB 3000x24 
Upper FLG 500x30 
Lower FLG 800x50 

Dimensions of the intermediate 
cross-beams [mm] 

WEB 1000x16 
FLG 300x25 

Dimensions of the end 
cross-beams [mm] 

WEB 2000x16 
FLG 300x25 

 

Fig. 1 Cross section of the original bridge (mm) 
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element is selected. There are two orders of the solid element 
considered in these analyses called HEXA8 with eight nodes 
and a higher order HEXA20 with twenty nodes. 

There are many ways to model bridge steel I-girders. They 
can be modeled by beam, shell elements or both of 
them7), 8 ), 9 ), 10 ). In this study, shell element is chosen to 
idealize all of steel members. MSC/Nastran provides an 
extensive library of elements to model isoparametric shell 
elements. Among these elements, quadrilateral one is 
commonly used. In these analyses, three types of 
isoparametric quadrilateral element are adopted: (1) QUAD4 
four-node element with optional coupling of bending and 
membrane stiffnesses, (2) QUAD8 eight-node element with 
optional coupling of bending and membrane stiffness, and (3) 
QUADR four-node element with no coupling of bending and 
membrane stiffnesses and the membrane stiffness 
formulation includes rotation about the normal to the plane of 
the element11). Traditional shell elements, such as QUAD4, 
have five degrees-of-freedom per node: three translations and 
two bending rotations. The stiffness for the rotational 
degree-of-freedom normal to the element (the drilling 
degree-of- freedom) is zero. This creates modeling 
difficulties which may eventually lead to poor solutions. The 
QUADR elements are improved shell elements, which have 
six degrees-of-freedom, and are much less sensitive to high 
aspect ratios and values of Poisson’s ratio near 0.511). In these 
elements, a rotational stiffness is computed about the normal 
to the element at the vertices and used in the formulation of 
the element stiffness.  

 
(3) Mass matrix formulation 

 
In mass matrix formulation, lumped mass is the simplest 

procedure for defining the mass properties of any structures. 
This method assumes that the entire mass is concentrated at 

the points at which the translation displacements are defined 
only. By doing so, the lumped mass matrix has a diagonal 
form, i.e. all of terms beyond the diagonal of the matrix 
(off-diagonal terms) are zero. On the other hand, consistent 
mass takes into account the effect of rotational inertias and 
leads to mass coupling between rotations and translations. 
This is more advanced method and, in many cases, gives 
more accurate results. However, the dynamic analysis of a 
consistent mass system requires considerably more 
computational effort than a lumped mass system does.  

The flow chart demonstrating the convergent tests is 
shown on Fig. 3, and the number of elements and 
degrees-of-freedom of all the studied models are depicted in 
Table 2. In summarization, four mesh sizes are considered. 
Each of the mesh size, three groups of finite elements are 
carried out. And two mass formulations is analyzed in each 
FE group. 

 
(4) Results and discussion 

 
There is no formulation that can predict accurately the 

natural frequencies of such this complex structure, therefore, 
the calculated frequencies of the Model-D with 
QUAD8/HEXA20 element types are considered numerical 
benchmark values because of the fine mesh’s density of the 
Model-D and the higher order of the finite elements. 

The typical differences of natural frequencies between the 
“exact” values and those of remaining models are graphically 
presented in Fig. 4. Because the changing tendencies of the 
differences with number of elements of all the studied models 
are the same, only those of QUAD4/HEXA8 element group 
with both lumped and consistent mass are displayed in Figs. 
4a and 4b, respectively. According to the figures, regardless 
element type and mass formulation, the convergences of the 
results happen highly in models whose numbers of elements 

a) Mode-A                                b) Model-B 

c) Mode-C                                d) Model-D 

Fig. 2 Four different mesh sizes (bridge deck is not shown)
 

Table 2 Number of elements/d.o.f of studied models 
 

Model QUAD4/HEXA8QUADR/HEXA8 QUAD8/HEXA20
 Element D.o.f. Element D.o.f. Element D.o.f.

A 1,719 12,276 1,719  12,276  1,719 39,576 
B 3,764 28,362 3,764  28,362  3,764 91,596 
C 10,104 79,434 10,104  79,434  10,104 257,736 
D     30,192 623,112 

 

Fig. 3 Flow chart of convergent test procedures 

QUAD4/HEXA8 QUADR/HEXA8 QUAD8/HEXA20

Mesh Size 

ConsistentLumped Consistent Lumped ConsistentLumped
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are less than five thousands. From five thousands upward, the 
differences of the frequencies compared with the “exact” 
solutions are small and negligible. It is easy to see that the 
convergences of all modes in the systems with consistent 
mass plotted in the Fig. 4b are smooth and have an 
understandable tendency toward the “exact” solutions. On the 
other hand, in the lumped mass systems shown in the Fig. 4a, 
several modes have unclear convergent trends such as the 
second (mode 2) and the fifth (mode 5) modes. 

To verify the performances of the element groups in 
connection with the two mass matrix formulations, the same 
results are plotted in Fig. 5. It is known that the consistent 
mass systems usually perform better than lumped mass ones 
do. However, the figure seems to show the opposite results, 
the results of lumped mass systems appear slightly more 
accurate than those of consistent systems. It is known that the 
lumped mass formulation introduces an error that tends to 
predict lower frequencies. This error counteracts with the 
error in stiffness matrix formulation that tends to predict 
higher ones12). It's largely serendipity, but for the problems, 
of which the effect of rotational inertias is very small, the two 
errors tend to balance each other and the lumped mass 
systems predict more accurate frequencies. In consistent mass 
systems, the frequencies always converge from above the 
exact values. Whereas, the frequencies often oscillate about 
the final values in lumped mass systems, but are closer than 

consistent. This also could explain for the abnormal 
tendencies happened in the second and fifth modes of lumped 
mass systems as aforementioned.  

The Fig. 5 also shows the superb performance of 
QUAD8/HEXA20 element group. It is easy to understand 
because of the high order element types. It is interesting to see 
the improved quadrilateral QUADR element with six 
degrees-of-freedom per node perform worse than the ordinary 
quadrilateral QUAD4 with five degrees-of-freedom per node 
does in the Model-A and Model-B shown on Figs. 5a and 5b, 
respectively. Its performance is better only in Model-C 
presented in Fig. 5c. This could be addressed to none 
coupling of bending and membrane stiffness of QUADR 
element. Because of this none coupling effect, the improved 
QUADR element is not recommended for curved surface11). 
When the mesh size is reduced, the angle between two 
adjacent elements is also decreased. That is the reason why 
the QUADR in Model-C performs better than in Model-A and 
Model-B. It can be said that in these curved system, the 
QUADR performs better than QUAD4 only if the mesh size 
is fine enough. 

The smaller of mesh size or the higher of the element 
order, the better of results are obtained. That also means the 
more expensive computational cost is required. However, the 
differences of the results between these models are small. The 
maximum difference is only approximately 5%. In other 

a) QUAD4/HEXA8+Lumped mass                                   b) QUAD4/HEXA8+Consistent mass 
Fig. 4 Differences of frequencies with varying of number of elements 
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words, the natural frequencies of the structure are not very 
sensitive with the mesh size, these studied element types. 
Based on the results of these studies, the mesh size of 
Model-C, the QUAD4/HEXA8 element group, and the 
lumped mass formulation are recommended for the next 
sections. 

 
4. Free vibration characteristics 

 
Although free vibration analysis does not relate to any 

types of loading, it is one of the most important steps in any 
dynamic analysis process. It is the usual first step in any 
dynamic analyses, and its results, which are natural 
frequencies and mode shapes, characterize the basic dynamic 
behavior and are an indication of how structures will respond 
to dynamic loadings11). An overall understanding of normal 
modes analysis as well as knowledge of the natural 
frequencies and mode shapes is important for all types of 
dynamic analysis. This section concentrates on the changes of 
natural frequencies and corresponding mode shapes with the 
varying of bridge’s curvatures.  Five different bridge’s radii 
are investigated, namely R = 100m, 200m, 400m, 800m and ∞ 
(straight) to take into account the effect of initial curvatures. 

Based on the results of the previous section, the mesh size 
of the Model-C, QUAD4/HEXA8 element group and lumped 
mass matrix formulation are used for these studied models. 
All of the finite elements are defined based on the cylindrical 
coordinate system located in the center of bridge’s curvature. 
The boundary conditions at the ends of the main girders, 
which are also based on the cylindrical coordinate system, are 
hinged and movable-supported in tangential directions as 
presented in Table 3. 

The usual first step in performing a dynamic analysis of a 
structure is determining the natural frequencies and mode 
shapes of the structure with damping neglected. The number 
of natural frequencies and associated mode shapes is equal to 
the number of degrees-of-freedom that have mass or the 
number of dynamic degrees-of-freedom in the structure. 
However, amongst many natural frequencies and mode 
shapes, only some of the first ones are usually interested 
because of their influences in dynamic response of the 
structure. In this study, only the first five modes, which are 
shown on Fig. 6 along with their names and abbreviations, are 
taken into account. These modes are chosen because they 
represent the behaviours of whole system vibrations, not local 
vibrations of only some members. 

Unlike in straight system whose mode shapes are easily to 
recognize, all the mode shapes in curved models are coupled 
of bending and torsion vibrations. The higher of curvature, 
the larger of coupling effects can be seen. However, based on 
the primary difference in vibrations of the two main girders, 
these mode shapes can be classified. In the vertical-related 

modes, the two main girders vibrate in the same directions 
and the magnitude of the outside main girder’s vibrations is 
always larger than that of the inside one and vice versa in the 
torsion-related modes.  

Numerical results of natural frequencies and frequency 
ratios of the five studied models are graphically presented in 
Fig. 7 with varying of curvatures. From the figure, it is easy 
to realize that the curvature has significant effects on the 
natural frequencies of the studied models especially in the 
models whose radii are smaller than 400m. It is noted that the 
boundary conditions, the length of centerline, the girder 
spacing, the number of cross frames, and the geometric 
properties of all models are unchanged. So the changes of the 
natural frequencies are mainly caused by different models’ 
curvatures. The figure clearly show that while the frequencies 
of the vertical-related modes decrease, those of the 
torsion-related one tend to increase with the increase 
curvatures. Increasing of curvature means shortening the 
length of the inside main girder and lengthening that of the 
outside one. In connection with the primary difference in 

Table 3 Boundary conditions 
 

Type u1 u2 u3 θ1 θ2 θ3 
Hinged Fix Fix Fix Free Free Free
Movable Fix Free Fix Free Free Free

u1 , u2 , u3 are translations in the R, θ, Z directions. 
θ1 , θ2 , θ3 are rotations about the R, θ, Z directions. 

 

e) The second torsional mode (T2) 
Fig. 6 The first five mode shapes of the straight model 

 

a) The first vertical mode (V1)  b) The first torsional mode (T1)

c) The first coupling mode of    d) The second vertical mode (V2)
torsion and horizon (TH1) 
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vibration between torsional and vertical modes as 
aforementioned, the changes of frequencies could be 
understood. 

Consequently, the frequency ratios, which are the ratios of 
the first torsional and vertical modes, change proportionally 
with the curvatures of bridges. It can be observed that the 
frequency ratios of almost all studied models are still small. 
So it is practical to increase this value by improving torsional 
rigidity of the studied bridge. And this is also the objective of 
the next section. 

 
5. Improving Free vibration characteristics 

 
When a bridge subjected to aerodynamic forces or an 

eccentrically running vehicle, it usually vibrates both 
vertically and torsionally. These unexpected vibrations cause 
fatigue damage in bridge members especially at connections 
due to stress concentration and sometimes lead to brittle 
fracture of the bridge. An effective method to mitigate these 
vibrations in bridge members is changing of its natural 
frequencies. In this section, the natural frequencies of the 
studied bridge are enhanced by several stiffening structures 
such as intermediate full-height diaphragms, lateral bracings 
and combinations of these structures. 

 
(1) Effects of intermediate full-height diaphragms 

 
Intermediate cross-frames or diaphragms of straight 

composite steel girder bridges can serve two distinct 
functions. They are designed to brace the girders’ 
compression flanges and distribute loads among the girders. 
They act as secondary members to maintain the structural 
integrity. On the other hand, in horizontally curved and 
skewed bridges, the interaction of bending and torsion causes 
these components to become very important load-carry 
members5). Therefore, the stiffnesses of diaphragms play an 
important role in the overall rigidity of curved bridges. 

In order to assess the effect of intermediate diaphragms on 
free vibration characteristics of horizontally curved bridges, 

the same number of models which is analyzed in the previous 
section is carried out with the only difference in intermediate 
diaphragms as typically shown in Fig. 8. The original 
intermediate cross-beams, whose depth is 1.0m, are changed 
by new intermediate diaphragms of 3.0m deep, which is equal 
to that of the main girder, and called full-height diaphragms. 

The differences of the first five modes’ natural frequencies 
are displayed on Fig. 9 with different radii of curvature. It is 
known that the higher stiffness of a member generally 
increases the natural frequencies of the system, on the 
contrary, its heavier structural mass cause decreasing. This 
could explain for the changes of the frequencies as displayed 
in the figure. It is clear to see the counteractions between the 
effects of mass and stiffness on these natural frequencies in 
vertical modes. The differences change from negative in large 
radius models to positive in small ones. In other words, the 
higher of curvatures are, the lagger positive effects can be 
achieved. 

The overall effects of the studied diaphragms can only be 
seen in the models whose radii are smaller than 200m. 
However, these enhancements of full-height diaphragms are 
small and not worth changing from ordinary intermediate 
cross-beams. 

 
(2) Effects of bottom-plate lateral bracings 

 
The lateral bracing used in this study is the 20mm steel 

plates linking the bottom flanges of the two main girders and 
hereafter are called bottom-plates. There are total six different 
bottom-plate configurations investigated in this study as 
shown on Fig. 10 along with their models’ names (concrete 
deck slab is not shown). The simplest bottom-plate 
configuration is bp2a model which has two bottom-plates in 
outmost exterior bays as shown on Fig. 10a. The number in 
each model’s name is the number of bays braced by 
bottom-plates in that model. Hence, the two bp4a and bp4b 
models, which are plotted in Figs. 10b, and 10c, have the 
same number but different locations of braced bays. In the 
bp4a model, there are four bottom-plates that are arranged 
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symmetrically at both ends of the bridge. In bp4b model, 
beside the two bottom-plates arranged identically to those in 
bp2a model, there are two other bottom-plates positioned in 
the middle of the bridge span. This situation is the same in 
bp6a and bp6b models which are shown on Figs. 10d and 
10e. The purpose of these models is to determine the effects 
of not only the number but also the location of braced bays on 
free vibration characteristics of the bridge. The last model is 
bp10 one shown on Fig. 10d. In this model, all ten bays of the 
structure are braced and this makes this model somehow like 
a steel box girder bridge more than I-girder one. In practice, 
there is no bridge that is designed like this model; however, 
this model is intended to learn the ultimate enhancements of a 
structure by these bottom-plates. The same as previous 
sections, five models, whose radii are equal to 100m, 200m, 
400m, 800m and infinitive, are considered. 

Because the changing tendencies of the frequencies of all 
studied models are similar, only calculated results of typical 
models with R= ∞ and 100m are graphically demonstrated on 
Figs. 11a and 11b, respectively. The results evidently reveal 
the greatly effects of bottom-plates on the natural frequencies 
of the torsion-related modes (mode 2, 5) and modestly effects 
on those of the vertical-related ones (mode 1, 4). In addition, 
frequencies of the studied systems are influenced 
considerably by both of the number and location of braced 
bays. With the same number of braced bays, the systems 
which are braced at exterior bays always achieve better 
results (bp4a, bp6a) than the others do (bp4b, bp6b). With all 
the bottom-plates at exterior bays, the natural frequencies of 
the systems increase proportionally with the number of 
braced bays. 

To confirm the effect of different bottom plates on the 
performance of the system, the frequency ratios of these 
models, which are the ratios between the natural frequency of 
the first torsional and that of the first vertical modes, are 
depicted in Fig. 12. It can be assured the better performance 
of bottom plate configurations which have exterior stiffened 
bays such as bp2a, bp4a, bp6a, and bp10 models. The bp6a 
and bp10 models produce very good responses; however, 
using too many bottom-plates becomes impractical when 

considering the cost effectiveness. Consequently, the bp2a 
and bp4a configurations are considered the suitable ones for 
the last section of this study.  

 
(3) Stiffening structures and their effects 

In the two previous sections, the effects of full-height 
diaphragms and bottom plates are carried out separately. 
From the calculated results, it is learned that the full-height 
intermediate diaphragms have a very little effect on the free 
vibration characteristics, whereas the bottom plates in 
exterior bays greatly enhance these characteristics of the 
studied bridge by increasing its torsional stiffness. It is also 
noted that the full-height diaphragms are in the vertical planes 
that are perpendicular to the main girders, whereas the 
bottom-plates are in the horizontal one. The combinations of 
these structural members could increase the spatial rigidity of 
the studied bridge and then greatly improve its free vibration 
response. From this deduction, this section investigates the 
effects of combinations of the full- height intermediate 
diaphragms and bottom-plates hereafter called end stiffening 
structures.  

Details of these end stiffening structures and their model 
names are shown in Fig. 13. In these models, beside the use of 
bottom plates, there are some replacements of ordinary 
intermediate cross-beams by full-height diaphragms. bp2a_2, 
bp4a_2 and bp6a_2 models are the combinations of the bp2a, 
bp4a, and bp6a models, respectively, with 2 full-height 
diaphragms at both interior edges of the bottom-plates. These 

a) bp2a model                          b) bp4a model 

c) bp4b model                          d) bp6a model 

e) bp6b model                          f) bp10 model 
Fig.10 Bottom-plate configurations (R=100m) 

 

Fig. 9 Differences between full-height diaphragm 
and original models 

 

-7.5

-5.0

-2.5

0.0

2.5

5.0

7.5

∞ 800 400 200 100

Radius of curvature (m)

D
iff

er
en

ce
s 

(%
) .

V1

T1

TH1

V2

T2

-274-



diaphragms, end diaphragms, main girders, bottom-plates, 
and concrete slab all together form two closed boxes at both 
ends of the studied bridge. As displayed in each model’s 
name, the first group of words represents for the bottom-plate 
configuration and the second is the number of intermediate 
cross-beams replaced by full-height diaphragms. Therefore, 
in other models beside the two diaphragms as described in 
above models, there are other ones which are placed inside, 
outside or both of the closed boxes. Five different curvatures 
R= ∞, 800, 400, 200, and 100 (m) are investigated in each end 
stiffening structure. 

From the results of previous section, it is known that the 
stiffer at both ends of bridge structure, the better of its 
dynamic response is achieved. Therefore, the formation of 
two close boxes in these combined configurations could 
enhance the natural frequencies of the system. As expected, 
these combinations result in significant influences on 

frequencies especially of the torsion-related modes as 
presented in Fig. 14. Even the simplest model bp2a_2 can 
produce favorable results that are comparable to those of the 
bottom-plate bp4a model. It can also be observed from the 
figure that the torsional frequencies of the bp4a_2, bp4a_4a, 
bp4a_4b, and bp4a_9 models are similar in spite of numbers 
of their diaphragms are totally different. This finding also 
correlates well with the results in previous section that the 
diaphragms achieve nearly no better results with regard to the 
original cross-beams. Therefore, the minimum replacement 
by two intermediate full-height diaphragms at both interior 
edges of bottom-plates is necessary in these models.  

To have an overview about the improving effects of the 
structures studied in this paper, the frequency ratios of the 
most reasonably studied structures in each section are 
displayed in Fig. 15. It is easy to see the performance of the 
bp4a_2 model is superb, whereas, that of full-height 
diaphragm is similar to that of original model one. In 
addition, the frequency ratios of the higher curvature models 
are always larger than those of the others. 

 
6.  Conclusions 

 
The present study has been investigated the free vibration 

characteristics of horizontally curved twin I-girder bridges by 
using 3-D finite element method of MSC Nastran. The results 
of many detailed FEM models provide sufficient evidents for 
the following remarkable conclusions: 

a) bp2a_2 model                          b) bp4a_2 model 

c) bp4a_4a model                          d) bp4a_4b model 

e) bp4a_9 model                          f) bp6a_2 model 
Fig. 13 Typical end stiffening configurations (R=100m) 
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b) R=100m 
Fig. 11 Natural frequencies of bottom-plate models 
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(1) In this studied bridge with a reasonable mesh size and 
given finite elements, the free vibration analyses are not very 
sensitive with the mesh size and element types. The 
performance of quadric quadrilateral shell elements is superb; 
that of 24-node shell element is better than 20-node shell 
element only if the mesh size is fine enough. Lumped mass 
system is slightly better than consistent one.  
(2) In the first five modes, frequencies of vertical-related 
modes tend to decrease; whereas those of torsion-related 
modes, on contrary, tend to increase with the increase of 
curvature. 
(3) The use alone of full-height diaphragms in this study 
does not gain desired enhancement with regard to ordinary 
cross-beams in the original models. In other words, the 
ordinary intermediate cross-beams have adequate stiffness in 
this studied bridge. 

(4) The bottom-plates considerably enhance the natural 
frequencies of torsion-related modes. These frequencies are 
greatly affected by both number and location of bays braced 
by bottom-plates. With the same number of braced bays, the 
systems which are braced at exterior bays always achieve 
better results. With all the bottom-plates at exterior bays, the 
natural frequencies of the systems increase proportionally 
with the number of braced bays. 
(5) Finally, the combinations of bottom-plates and 
diaphragms exhibit a significant enhancement of the natural 
frequencies. However, only minimum use of 2 intermediate 
diaphragms is necessary. 
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b) The second torsional modes (T2) 
Fig. 14 Torsion-related frequencies with stiffening structures

 

a) The first torsional modes (T1) 

Fig. 15 Frequency ratios of studied improving structures
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