
  
 

Journal of Structural Engineering Vol.53A (March 2007)                                                            JSCE 
 
 

Computation of SIFs for branched crack problems by scaled boundary finite element method 
 
 

Santosh Shrestha*, Mitao Ohga** and Kazuhiro Taniwaki***  

 
*Member, Dr. Candidate of Eng., Dept. of Civil & Envn. Eng., Ehime University, Bunkyo-Cho 3, Matsuyama 790-8577 

** Member, Dr. of Eng., Professor, Dept. of Civil & Envn. Eng., Ehime University, Bunkyo-Cho 3, Matsuyama 790-8577 
** Member, Dr. of Eng., Lecturer, Dept. of Civil & Envn. Eng., Ehime University, Bunkyo-Cho 3, Matsuyama 790-8577 

 
 

In this paper, extensions of application of newly developed scaled boundary finite element 
method to branched crack problems are presented. In this method, stress singularity at a crack tip 
can be derived analytically from its stress solution. Using SBFEM’s semi-analytical properties 
authors’ have presented a direct and simple SBFEM formulation to compute fracture parameters. 
Stress intensity factors of branched crack are computed extending the SBFEM formulation 
proposed by authors. Numerical examples for a range of crack sizes are analysed to examine the 
effectiveness of the proposed method. In addition, the application of SBFEM is extended to 
crack propagation simulation in 2D linear elastic problem under mixed mode condition. Since 
only the domain boundary is required to discretize like in boundary element method and also it 
has its own unique property that the side-face boundaries and near crack tip are not necessary to 
discretize, the burdensome remeshing required in FEM and BEM is minimized. A mixed mode 
problem for crack propagation analysis is simulated. The computed SIFs and crack propagation 
trajectories are in remarkable agreement with available values in the literatures. 
   Key Words: SIFs, branched crack problem, scaled boundary finite element method, crack 
propagation simulation 

 

 
1. Introduction 

 
 Branched cracks are very common forms of cracks in 
engineering structures. These cracks can adversely affect the 
structural integrity of components and shorten their service life. It 
is important therefore for engineers to be able to determine the 
stress distribution in the region of cracks, as failure to make 
proper predictions regarding the consequences of a crack could 
lead to catastrophic failures. The stress distribution in the vicinity 
of a crack depends on the value of the stress intensity factor at the 
crack-tip. Therefore, fast and accurate calculations of stress 
intensity factors (SIFs) are needed for the simulation of crack 
evolution and simulation based life-cycle design of engineering 
structures.  

Over the last few decades, many researchers 1-13) have 
studied the problem of computing stress field around the 
branched cracks by analytical and various numerical techniques. 
Among the numerical techniques, finite element method (FEM), 
boundary element method (BEM), dual boundary finite method 
(DFEM), displacement discontinuity BEM, extended finite 

element method (XFEM), meshless method, dislocation method 
and body force method (BFM) are popular to compute SIFs of 
branched cracks. Even though much achievement has been made 
in crack modeling techniques, both simple and very accurate 
crack modeling techniques still need to be developed, particularly 
for branched crack and crack propagation problems 13).  

A recently developed scaled boundary finite element method 
(SBFEM) 14), which attempts to combine the advantages of FEM 
and BEM, i.e., it discretises boundaries as BEM but it does not 
require fundamental solutions as in the FEM, is emerging as an 
alternative numerical method for crack analysis. This method has 
ability to semi-analytically compute stress and displacement 
fields of singularities region at the ‘scaling center’ of the bounded 
domain when this center lies on the point of interested 14). By 
using the semi-analytical properties, authors 15 – 17) and other 
researchers 15-21) have employed the SBFEM to evaluate the 
fracture parameters: SIFs, the T-stress and higher order terms of 
the crack -tip stress field and demonstrated the effectiveness of the 
SBFEM in straight crack problems. However, as per authors’ 
knowledge, none of the previous studies have addressed the 
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branched crack problems and the crack propagation analysis 
using this method. 

 The main purpose of this paper is to extend application of 
the SBFEM for computing the SIFs at the tips of branched cracks 
problems and crack propagation simulation. In this paper, an 
efficient SBFEM formulation proposed by authors15) is extended 
to evaluate the SIFs of branched crack problems. In addition, a 
quasi-automatic procedure is presented for crack propagation 
simulation. Since only the domain boundary is required to 
discretize like in BEM and also it has a unique property that 
certain fixed and free (side faces) boundaries are not necessary to 
discretize22), the burdensome remeshing required by FEM and 
BEM is minimized. By semi-analytical computation of stress 
singularity with high accuracy and simple remeshing requirement 
for crack propagation, it can be confirmed that the proposed 
numerical method can be applied to fracture analysis more easily 
with relatively coarse and simple model than other computational 
methods. Two branched crack problems - bounded and 
unbounded domain are simulated to compute SIFs, and a 
benchmark problem of mixed mode crack problems is 
considered to simulate crack propagation. The computed SIFs 
and crack propagation trajectory are in excellent agreement with 
reference results.  
   
2.  Scaled boundary finite element method 
 

The scaled boundary finite element method is a new 
semi-analytical fundamental solution-less BEM based on FEM14). 
In this method, the partial differential equation of a variety of 
linear problems is transformed into ordinary differential equations. 
Then, these ordinary differential equations are solved analytically 
in radial direction and the coefficients of these equations are 
determined by the finite element approximation in the 
circumferential directions. The virtual work derivations of the 
stress and displacement fields in the method are presented in 
detail in Ref. 23), and authors are summarized the derivation in Ref. 
17) for bounded domain. In this paper, the summary from Ref.17) is 
reproduced here with some modifications for unbounded domain 
for convenience as follows.  

In this method, a coordinate system consists of a radial 
direction (ξ ) and a local circumferential direction (η ) is used to 
scale the domain relative to a scaling center. The radial coordinate 
has a value of zero at the scaling center and a value of one on the 
domain boundary, which is discretized in a finite element manner. 
The circumferential coordinate measures the distance 
anticlockwise around the boundary. A bounded domain and 
unbounded domain with side faces are as shown in Fig 1(a) and 
(b) respectively. The bounded domain is described by η0  ≤ η ≤ η1 
and 0 ≤ ξ ≤ 1, while unbounded domain with infinite extent in the 
ξ  direction is described by η0 ≤ η ≤ η1 and 1 ≤ ξ  ≤ ∞. The   
scaled boundary coordinates are related to Cartesian coordinates 
by   

)(0 ηξ xxx +=    (1a) 

)(0 ηξ yyy +=  (1b) 

where x(η) and y(η) are the functions describing the variation of 
the boundary in x and y directions as functions of η. 

The basic assumption of the SBFEM is that the 
displacements at any point in the domain defined by scaled 
boundary coordinates (ξ, η) can be expressed in the form 
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where N(η) is the shape function in the circumferential direction, 
which are constructed as in FEM. u(ξ ) defines the displacements 
along the radial lines. The key relations defining in SBFEM for 
plane problems are as follows. (See Ref. 14) for details of 
SBFEM).  
 The governing differential equation (of the static equilibrium) 
in the absence of body load is 

0)},({][ =yxL T σ        (3) 

where [L] is the standard linear operator in terms of Cartesian 
coordinate and  {σ(x,y}}=[σx, σy, τxy]T is a vector of the stresses.  
 The linear operator to scaled boundary coordinate system 
using special techniques (See for details in Ref23)) is as follows. 
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and the approximate stresses in the coordinate ξ , η  from Eqs. (2) 
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Fig. 1 Scaled boundary finite element co-ordination 
system in (a) bounded domain and (b) 
unbounded domain with side faces. 
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to (4) leads to 
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The virtual work statement is applied to introduce the 
equilibrium. Performing integrals over the domain using Green’s 
Theorem and then a series of mathematical manipulations, the 
virtual work statement is satisfied for all virtual displacements 
{δu(ξ)} when the following conditions are simultaneously 
satisfied 23) . 
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where the coefficient matrices  
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To perform the integration for unbounded or semi-infinite 
domain cases, the boundary is traversed in the opposite direction 
than for bounded domain case. The scaled boundary finite 
element equation in displacement, i.e. Eq. (7), is same as for both 
cases.  

By inspection, the solution to the set of Euler-Cauchy 
differential equation represented by Eq. (7) must be of the form  

......)}({ 332211
321 +++= −−− φξφξφξξ λλλ cccu  (9) 

where the exponents λi and vectors {φ i} are interpreted as a  
radial scaling factor and a displacement modes shapes. The 
integration constants ci represent the contribution of each mode to 
the solution, and are dependent on the boundary conditions. 

The displacements for each mode from Eq. (9) can be written as  

}{)},({ φξηξ λ−=u     (10)                      

Now substituting Eq. (10) and its derivations into Eq. (7) and 
then simplifying yields the quadratic eigenproblem. 

 }0{}]]{[]][][[][[ 21102 =−−− φλλ EEEE T  (11) 

The solution of the eigenproblem is seen to yield a set of 
modes that span the solution spaces of both the bounded and 
unbounded domain simultaneously. 

For bounded domain problems, only n modes with negative 
real component of λ lead to finite displacements at scaling center 
and for unbounded domain problems those mode with 
non-negative real component of λ are chosen to enforce finite 
displacements at infinity. This subset of n nodes is denoted by 
[Φ1] and [Φ2] for bounded and unbounded problems respectively. 

For any set of boundary node displacements, u, the integration 
constants are  

}{][}{ 1 uc i
−Φ=        (12) 

The displacement fields and the stress field can be obtained using  
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Eqs. (13) and (14) are, respectively, the semi-analytical 
solutions for displacement and stress fields inside the domain. 

 
3.  SBFEM for fracture analysis  
 
 Computation of two fracture parameters – SIF and T-stress 
  

To compute the fracture parameters i.e. SIFs and T-stress and 
higher order terms of the crack-tip stress fields, authors have 
presented two different formulations by comparing the classical 
linear elastic field solution (Williams’ eigenfunction series) in the 
vicinity of a crack-tip with the scaled boundary finite element 
stress and displacement field solution at any point ahead of 
crack-tip in Refs.15) and 16) respectively. In these formulations, the 
so-called ‘scaling center’ of SBFEM is considered at the crack-tip, 
as shown in Fig. 2 and the stress/displacement field along the 
radial direction emanating from the crack-tip where the stress 
singularity occurs are analytically calculated to approximate the 
crack-tip along the line of propagation of the crack. According to 
Ref. 16), the mixed mode SIFs and T-stress of the stress fields are 
computed by the following relations.  

Stress intensity factor for mode I  

rcK yyI ˆ2)ˆ( πσ ′′=    (15) 

Stress intensity factor for mode II 

 rcK yxII ˆ2)ˆ( πσ ′′=    (16) 

 and T-stress  

)ˆ( xxcT ′′= σ    (17) 

 where xxσ̂ , yyσ̂ , and xyσ̂ are the stress components along the 

Fig. 2.  SBFEM element with different coordinates 
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axis as shown in Fig. 2, r̂   are the radial distances of the 
boundary nodes from scaling center, and c is the integration 
constant. In this paper only the basic equations of the proposed 
formulation are presented. For a more detailed description we 
refer to Ref15). 
 
Crack propagation simulation procedure 
 
 Several criteria have been proposed to predict local direction 
of crack propagation. Among them, one of the most commonly 
used is based on maximum hoop or principal stress at the crack 
tip 24). In this study, the maximum principal stress criterion, which 
predicts the direction of crack growth from the stress state prior to 
the crack extension, is considered for crack propagation 
simulation. In this criterion, it is considered that the crack will 
propagate from its tip in the direction along which the maximum 
hoop stress σθθ occurs. The hoop (circumferential) stress in the 
direction of crack propagation is a principal stress. Therefore, the 
critical angle, θ0, defining the radial direction of propagation can 
be determined by setting the shear stress σr θ  to zero. 

 0
0

=
∂

∂
θ

σθθ    (18) 

According to Ref.25) considering both the singular (SIFs) and 
constant (T-stress) terms of the stress field near crack-tip on 
maximum circumferential stress criteria, the direction of crack 
propagation, θ0, is computed by solving the following equation.  
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where KI and KII are mixed mode SIFs, and T is T-stress for 
any instance during the crack-growth. rc is an additional length 
scale representing the fracture process zone size. When the values 
of KI , KII and T are known, θ0 can be easily solved by means of 
Eqs. (21). Since the fracture process zone size, rc , is generally 
assumed to be very small relative to the crack size and specimen 
dimensions, only SIFs effects are considered to compute the 

propagation angle θ0 in this paper. 
Considering only the singularity terms (SIFs) the Eq. (19) 

becomes  

0)1cos3(sin 00 =−+ θθ III KK   (20) 

The simulation of crack propagation involves a number of 
successive analyses. Each analysis consists of the following steps. 

i. A SBFEM analysis of a crack structure is performed 
placing a scaling center at crack-tip as shown in Fig. 
3 (a). The stress and displacement fields ahead of 
the crack-tip are computed. 

ii. A mixed mode SIFs and T-stress are computed 
using Eqs. (15) to (17) respectively. 

iii. The direction of crack propagation is calculated 
from Eq. (20). 

iv. A virtual increment of crack length (∆a) is defined 
according to the user’s specifications and the 
location of new crack-tip is determined from the 
defined incremental length and computed crack 
propagation direction. 

v. By adding two nodes locating on the opposite sides 
of the crack in the old crack tip, the sub-domain that 
includes crack-tip is further sub-divided into three 
sub-domains as shown in Fig. 3 (b), and then 
discretization of the boundaries and interfaces are 
updated according to the requirement for accurate 
computation of stress singularity. Since SBFEM has 
a unique property that certain fixed and free 
boundaries passing through scaling centers need not 
be discretized, the scaling centers are placed in such 
as way that discretization should be minimized. 

vi. Step (i) to step (iv) are repeated to locate new 
crack-tip. Then the interfaces of sub-domains near 
the crack are shifted to previous crack-tip, as shown 
in Fig.3(c), and upgrade the discretization for 
analysis. 

vii. Then step (i) to step (vi) are repeated for further 
simulation 

 
In this procedure, the simulation of crack propagation is 

carried out incrementally.  In every increment, users should 
define the incremental crack length to locate the crack-tip. 
Therefore, the proposed procedure is quasi-automatic. 

 

Fig. 3. The proposed remeshing procedure for crack propagation simulation  
   (Si & Si+1 are the old and new crack-tip) 

(a) Initial mesh (b) First remeshing mesh (c) Second remeshing mesh 
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4.  Numerical Examples 
 

 In this section, the proposed SBFEM was applied to 
evaluate SIFs of branched crack and to simulate crack 
propagation analysis. The following three crack problems were 
simulated.  

i) Symmetrical branched crack in finite plate, 
ii) Double symmetrical branched crack in infinite plate,  
iii) A mixed mode crack problem  

 The first and second problems are considered as a bounded 
and unbounded branched crack problems to compute the SIFs at 
the crack-tips, and the third problem is considered to examine the 
effectiveness of the proposed crack propagation procedures.  
 
4.1 Symmetrical branched crack problem in finite plate 
 

A symmetric branched crack in a finite plate subjected to 
uniaxial tension perpendicular to the main crack was considered 
first. The schematic diagram of the problem is presented in Fig. 4 
(a), where H and W are plate dimensions, a and b are the crack 
length of main crack and branched crack respectively and θ is an 
angle of branched crack with main crack. The problem was 
analysed assuming W = 20, H = 16, θ = 450 and b/a = 1. The 
applied load was σ 0 = 1 with its units consistent with that of E.  

The normalized SIFs at the main crack tip A and at the 
branched crack tip B are computed by the following equations. 

cKFandcKF

cKF
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IIIB
B
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/

==

=
  (21) 

Regarding the discretization model, only the half portion was 
modeled due to symmetriy along horizontal axis by placing two 
scaling centers at crack tip A and B as shown in Fig 5 (a). The 
computed normalized SIFs at crack-tip A and B using above 
mentioned relations  (Eq. 21) are compared with the results of 

the extended finite element method (X-FEM) 11) in Fig. 5 (b). The 
comparison shows that the SBFEM results are in good agreement 
with the X-FEM results.  

 
4.2 A double symmetrical branched crack in infinite plate 

 
The second example is considered to be a double 

symmetrical branched crack (DSBC) problem in an infinite plate 
with uniform radial tension   as shown in Fig 6 (a) where all the 
symbolic representations are same as in the first example.  

An advantage is taken of the biaxial symmetry of the 
problem, and one quarter of the problem is modeled. The quarter 
model is divided into three scaled boundary sub-domains - an 
unbounded sub-domain with scaling center at the origin, o, and 
two bounded domains with scaling center at the crack-tip and 
origin. The sub–domains are connected along the discretized 
boundary ABC as shown in Fig. 6 (b). The SIFs at the tips of 
branched crack is computed from the bounded domain as in the 
first problem .        

The computed results of SIFs normalized by applied stress, 
σ0 (πc)0.5 for θ = 450 are presented in Fig. 7. These SBFEM 
results are compared with those of DDBEM presented in Ref. 13). 
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Fig. 4. Schematic diagrams of symmetric branched 
crack problem 

Fig 5. a) An analytical model of symmetric branched 
crack problem b) Comparison of computed 
normalized SIFs at crack tips A and B. 
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The comparison clearly shows that the SBFEM results are in 
good agreement with the reference values with only 3 % 
deviations. 

 
4.3 A single edged cracked plate  
 

 A single edged cracked plate with fixed at the bottom and 
subjected shear stress of τ = 1 unit on the top was simulated for 
crack propagation. It is a widely used benchmark example for 
mixed mode crack problems. The schematic diagram is shown in 
Fig. 8 (a), and the parameters are: a = 3.5, W = 7 and L = 16. 
Young’s modulus E = 105 and Poisson’s ratio ν = 0.25. All units 
are consistent with that of E. 

For the analysis, whole structure was modeled with five 
sub-structures as mentioned in section 3. The SBFEM analytical 
model for the second remeshing (step) is as shown in Fig. 8 (b) 
where “+” signs are so-called the scaling centers. A scaling center 
was placed at crack-tip to compute the SIFs at the crack-tip as a 
necessary condition of SBFEM formulation presented by authors 

and other four scaling centers were placed at free boundaries as 
shown in Fig. 8 (b) so as to minimize the discretization 
boundaries.  The computed mixed mode SIFs and T-stress 
values obtained from Eqs. (15) to (17) for the original case were 
compared with those from Refs. 27) and 26) respectively in Table 1. 

Table 1. Comparison of mixed mode SIFs and T-stress 

SIFs SBFEM Reference Error %

Mode I , KI 33.95 34.0 27) 0.147 
Mode II, KII 4.542 4.55 27 0.176 

T-stress 2.6596 2.6864 26) 1.00 

 
Table 1 shows that the computed SIFs are in good agreement 

with the literature results with less than 1% deviation. 
After computing SIFs, crack propagation direction was 

estimated using Eq. (22) at each increment. The initial 
propagation angle was -14.75 degrees. To compare the computed 
crack path results, the incremental crack length for each step of 
the crack propagation was considered as 4% of the initial crack 
length as in Ref.27). At each step, the scaling center at the crack-tip 
and the interfaces of the sub-domains near the crack-tip were 
shifted to the new location of the crack-tip and the previous 
crack-tip locations respectively as mentioned in section 3. In the 
old crack tip, two nodes locating on the opposite sides of the 
crack were added. The computed crack path is compared with 
those of meshless method from Ref 27). The comparison of the 
computed results and references results is presented in Fig. 9. It 
can be seen from Fig. 9 that the computed results are in 
remarkable agreement with the reference results. Fig. 8 (b) clearly 
shows that the left, top and bottom boundaries and portion ahead 
of crack-tip of the problem are not necessary to discretize which 
leads to minimize the remeshing burdensome of FEM and BEM. 
Fig. 10 shows the deflected shape of the problem at 18 iterations 
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5.  Conclusion 
 
 In this paper, the applications of scaled boundary finite 
element method have been extended to branched crack problems 
and crack propagation simulation.  The stress singularity i.e. 
SIFs of the tips of branched cracks has been computed using an 
SBFEM formulation proposed by authors. The accuracy of these 
formulations in branched crack is examined with two different 
examples for a range of crack sizes. It can be seen that the 
SBFEM computation of SIFs of the tips of the branched crack is 
simple and very accurate.  In addition, using advantages of 
SBFEM over traditional FEM and BEM such as discretization of 
only the domain boundaries and interfaces of sub-domains, no 
need to discretize certain fixed and free boundaries, and freedom 
in sub-structuring and locations of scaling centers, a 
quasi-automatic procedure of the proposed method has been 
presented for crack propagation simulation based on linear elastic 
fracture mechanics. A mixed mode crack problem has been 

examined to demonstrate the effectiveness of the proposed 
procedures. It can be seen that the numerical results obtained by 
the SBFEM formulations are in remarkable agreement with the 
corresponding ones in the literature. Based on the results of the 
study it can be confirmed that the proposed numerical method 
can be applied to crack problems more easily with relatively 
simple remeshing model than other computational methods for 
crack propagation analysis. 
 This paper has dealt with a single problem with simple 
geometry for crack propagation simulation considering only the 
SIFs effects. It can be applied to simulate problems with more 
complex geometry and loading cases considering both SIFs and 
T-stress effect. On the other hand, even though SBFEM has 
many advantages for fracture analysis over the traditional FEM 
and BEM, it has certain limitations such as requirement the 
scaling of material variations with relative to the scaling center, 
difficult to deal patch load within the domain, and considering 
linear elastic material behaviors for elasto-statics problems. 
Therefore, coupling of SBFEM with FEM will be more effective 
for fracture analysis, which is expected to appear in the authors’ 
forthcoming publication 

Fig. 10. Deflection shape at 18th step of remeshing 

Fig.8. a) Schematic diagrams of SECPS and b) Analytical 
model for 1st step of remeshing. 
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