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In this paper, scaled boundary finite element method is applied to various crack problems to
demonstrate the efficiency and accuracy of the method. The fracture parameters that are not only
of the inverse square root singular term - SIFs but also of the constant non-singular terms -
elastic T-stress, of the stress fields near crack-tip are computed using a simple and direct
formulation proposed by authors. The proposed formulations for evaluating SIFs and elastic
Tistress, of the stress fields near crack-tip are derived by comparing the stress field ahead of a
crack-tip with that of standard Williams’ eigenfunction solution for the crack-tip. Four numerical
examples for a range of crack sizes with different loading and geometry are analysed to examine
the accuracy and efficiency of the method. The computed results are in remarkable agreement

with available values in the literatures.
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1. Introduction

The study of the stress and displacement fields near crack-tip
in fracture mechanics is very important because these fields
govern the fracture process that takes place at the crack-tip.
Generally, a single parameter, called stress intensity factors (SIFs),
has been used for years to characterize the stress and
displacement fields near a crack-tip for the fracture behaviors.
Recently, the elastic T-stress is being recognized as an important
additional parameter besides the SIFs for fracture analysis and
hence the accurate and efficient numerical evaluation of these
paiameters for cracked geometries has been receiving much
attention. The 7-stress corresponds to the second, non-singular
term of William’s eigenfunction expansionl) of linear elastic stress
field near a crack-tip, which is the constant stress acting parallel to
the crack flank. The experimental tests conducted by Williams
and Ewing? on mixed mode fracture showed that the inclusion of
this term could improve the accuracy of the theoretical
predictions of the crack initiation angle and the critical SIFs.
Other studies indicated that T-stress has significant influence on
crack growth direction, crack growth stability, crack-tip constraint
and fracture toughness 9,

It is well known that how to model the crack is the key
issue in the analyses. Since fracture parameters can only be
determined analytically for a very few idealized cases, in general,
numerical methods must be employed for practical problems.
Among the numerical techniques, finite element method (FEM)
and boundary element method (BEM) are most popular when
rigorous solutions of complex inclusion problems are required.
Unfortunately, these methods have some limitations and are
inefficient in dealing with crack-tip problems, even within the
linear elastic regime. When standard FEM is used, extremely
fined meshes must be employed around the crack-tip with whole
domain discretisation to capture the characteristic of singular
stress fields that leads to slow convergence. In order to improve
the rate of convergence, sophisticated mesh generation
procedures or adaptive techniques must be employed. Hybrid
crack element (HCE) method 7, singular p-version FEM 9,
sversion FEM (sFEM)”, extended FEM (X-FEM)®, and
partition-of-unity FEM (PUFEM) % are the some of the recently
developed method to deal the singular stress field more accurately.
BEM has some advantages over. FEM since it only needs
boundary discretisation of the studied problems. But BEM needs
a lot of skills because in numerical implementation, one needs
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fundamental solution and advanced mathematical knowledge to
deal with various singular integrals. Besides, the standard FEM
and BEM are based on assumed piecewise smooth functions,
which do not resemble the exact solution near the singular poin 10,
The scaled boundary finite element method (SBFEM), a new
semi-analytical method, is emerging as an alternative approach in
order to overcome the deficiencies of FEM and BEM. As will be
discussed later, SBFEM can accurately compute stress and
displacement field of singularities region at the crack-tip without
any a priori assumption when the ‘scaling center’ lies on the
crack-tip.

_ SBFEM was previously applied to determine stress intensity
factors by Song and Wolf ' and Deeks . Song 1) applied
SBFEM to determine dynamic SIFs by using super elements, All
these studies have addressed only the computations of SIFs for
the crack problems with simple geometries and loading condition.
Recently, authors ) applied SBFEM to compute the singular and
higher order coefficients terms of crack-tip stress fields. In Ref. "
a simple technique for evaluating coefficients of stress field near a
crack-tip is proposed by comparing the stress field along the
radial points ahead of the crack-tip with that of standard Williams’
eigenfunction expansion of the linear elastic stress field at the
crack-tip. However, authors also considered only simple
benchmark problems to demonstrate the effectiveness of the
proposed method.

The main purpose of this paper is to apply the SBFEM for
computing the fracture parameters, not only the inverse square
root singular term - SIFs but also of the constant non-singular
terms - elastic T-stress, of the stress fields near crack-tip of various
crack problems with complex geometry and loading, In this paper,
the technique proposed by authors™ is applied to evaluate the
fracture parameters. The proposed SBFEM formulation can be
applied directly as well as independently to evaluate T-stress and
SIFs for various cracks from semi-analytical solution without any
post-processing. Moreover, in this proposed method, the so-called
scaling center is placed at crack-tip that omits the discretisation of
the straight crack faces and near crack-tip, which is the notorious
difficulty encountered in other methods.

2. Scaled boundary finite element method

The scaled boundary finite element method is a new
semi-analytical fundamental solution-less BEM based on FEM™.
In this method, the partial differential equation of a variety of
linear problems is transformed into ordinary differential equations.
Then, these ordinary differential equations are solved analytically
in radial direction and the coefficients of these equations are
determined by the finite element approximation in the
circumferential directions. The virtual work derivations of the
stress and displacement fields in the method are presented in
detail in Ref. '@ but are summarized here for convenience as
follows

Governing equations of elastostatics

For two-dimensional elastostatics problems, the strains
{e(xy)} related to the displacement {u(x, y)} by

e, ajox 0 y
{e(,y)=1¢e, t={ 0 d/ay {ux} 4]
- 8/dy d9fex|l”

= [LHu(x, y)}

where [L] is linear differential operator.
And the stresses {00y} }=[0;, Oy, <] are given by

{o(x,y)} =[DKe(x, y)} = [D][L1{u(x. y)} @
with the elasticity matrix [D]
In no body load case, the internal equilibrium in elastostatics
leads to the differential equation
[L] {o(x, y)} =0 €)

which must be satisfied at every point within the domain.
Scaled boundary coordinate system

In this method, a coordinate system consists of a radial
direction (£) and a local circumferential direction (77) is
introduced (Fig, 1). The radial coordinate is defined to be zero at
‘scaling center’, and to have unit value on the domain boundary.
The circumferential coordinate measures the distance
anticlockwise around the boundary. The coordinate system is
termed the scaled boundary coordinate system, and related to
Cartesian coordinate by

x =x+&x(n) (4a)

y=yo+&ym) (4b)

where x(77) and y(7) are the functions describing the variation of
the boundary inx and y directions as functions of 7.

Applying standard procedures to transform the geometry from
Cartesian co-ordinates to the scaled boundary co-ordinates
defined in above Eq. (4), the linear operator in Eq. (1) can be
written in the co-ordinate &, n as

1= )5+ £l S

where [b'(n)] and [b%(1))] depend only on the geometry of the
boundary.

Displacement function

The displacements at any point in the domain defined by
scaled boundary coordinates (& 7) can be expressed in the form:

(&)} = 2N M@} =INmIuE)  ©
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which represents a discretisation of the boundary only.
Substituting Egs. (5) and (6) in Eq. (3) lead to the approximate
stresses in the co-ordinate &, n7 as

{oG.m} =[DI[B' MHuE)} ¢ + é[D][BZ(n)]{u(E)} Y
where
(B ()] =[b' IV e ®

(B> =[6* N )],

These results can be used in the virtual work equation to solve
for the radial displacements.

Scaled boundary finite element equation

The virtual work statement is applied to introduce the
equilibrium. When the domain is subjected to a set of boundary
tractions {t}, the virtual work statement is

J{oeY {o}dV = [{ou} {e}ds )
|4 A

Performing integrals over the domain and then a series of
mathematical manipulations, the virtual work statement is
satisfied for all virtual displacements {&u(&)} when

B2 0@) e HETHE'T -[ENE®} e {E 1 u®)}=0 (10)

where the coefficient matrices

(£°] = }[B‘]T (DI[B* |dn {11a)
-1
[E']= [1B*] [DIB'W |n (11b)
-1
1
(E%1= ((B*V ([DIB* WV dn (11¢)
-1

are independent of & The integrals of these [E), [E'], and [E%]
are evaluated using Gaussian quadrature. Eq. (10) is a standard
ordinary differential equation for the displacements (&) with the
dimensionless radial coordinate & as the independent variable.

Solution procedures

By inspection, solution to the set of Euler-Cauchy differential
equation represented by Eq. (10) must be of the form

Scaling center

Fig 1 Scaled boundary coordinate system

W@} = Sek ™ ig) (122)
where the exponents A; and vectors {¢;} are inferpreted as a
radial scaling factor and a displacement modes shapes. The
integration constants ¢; represent the contribution of each mode to
the solution, and are dependent on the boundary conditions.

The displacements for each mode from Eq. (12a) can be
written as

(& m}=&"{s} (12b)

Now substituting Eq. (12b) and its derivations into Eq. (10)
and then simplifying vields the quadratic eigenproblem.

PIEE1-AE'T ~[E"1-[E°T1 ¢} = {0} 13)

This eigenproblem can be solved using standard techniques,
yielding 2r displacement modes, where 7 is the number of nodes
used in boundary discretisation, and hence is also the size of the
coefficient matrices.

Bounded problems can be represented conveniently by taking
0 < £ < 1. For such problems, only # modes with negative real
component of A lead to finite displacements at scaling center. This
subset of n podes is denoted by [®;]. For any set of boundary
node displacements, u, the integration constants are

{e} =101} (14
The displacement fields can be obtained using

{u(§,n)}=[N(n)]ilci§'“‘ @} (15)

and the stress field ,
fo@nt=bEes A o E@lps 9

Eqs. (15) and (16) are, respectively, the semi-analytical
solutions for displacement and stress fields inside the domain.

3. Determination of SIFs and elastic T-stress
Two fracture parameters — SIF and T-stress

The Williams’ eigenfunction expansionl) for crack-tip stress
fields in any linear elastic body is given by a series of the form

0 (r,0) =4 K F0)+ A P 0) .. 17

where (r, 6) are the local polar coordinates with the origin at the
crack-tip, as shown in Fig. 2, the coefficients A;, A, embodies
SIFs and T-stress respectively whose values vary with applied
load and geometry of the cracked body and fi(6) is a function
describing the angular variation of the stress field. The first term is
singular at the crack-tip, and is controlled by the elastic SIF. The
second term is referred to as a constant non-singular components
and vanishes for pure mode IL.
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According to Ref. 7, the asymptotic stress field for Mode I
can be written as

o, L (6. (36)]
1-sin}|—|sin| —
g, 2 2
K, e\l . (6 36
o,t= cos|—|d sin|—]cos|—] |
2xr 2 2 2
Txy 1+ sin 9 sin AN
. 2 2 P
") (gy]
T © n_yz fx(n)( )
+J0L+ 3 A,r fy @)}
0 nw=3
£57@))]

To normalize the effect of T-stress relative to the SIF in mode
I, Leevers and Radon ' proposed a dimensionless parameter
called the biaxiality ratio B, as

oa

K,

B=T (19)

where a is the length of the crack. The dependence on
geometrical configurations can be best indicated by the biaxiality
parameter B.

SBFEM formulation for fracture parameters

In the numerical SBFEM analysis, let us consider the
so-called ‘scaling center’ at the crack-tip, as shown in the Fig. 2
and the stress field along the radial direction emanating from the
crack-tip where the stress singularity occurs are analytically
calculated to approximate the crack-tip along the line of
propagation of the crack. In this consideration, only the
boundaries, but not the straight crack faces and faces passing
through the crack-tip, are discretised,

Now the stress field Eq. (16) can be expanded as

o(,m) =AE K +4E° +A3§/]/2 +...+A,,§%'1
=§ Aig%'l (20

where the coefficients A; =c{ & (17)}; that depend only on the
circumferential coordinate 77, and are constants for a given radial

n
p ,4

i n=1
Scaling center |
at crack-tip : I - WE

i P

V2 A -5 7 (E,

,—’ﬁ” (? &.m) n=-1

e 7 %

[~ 1 i

- =1

0

Fig.2 SBFEM element with different coordinates

direction of a given element.
The stress components & (7)) are

{6} =16,,6,,6,}

eay
= [D][-A[B' )] +[B* m)]14}
and the power of & is
A =% V i=123,...,n 22)

For a given radial direction emanating from the crack-tip and
inclined at an angle 6 to the global x-axis as shown in Fig. 2, the
following relationships are obtained from Eq. (4) as

r=r(&,n)=E&F 23

where 7 =r(n) =\]x(17)2 +y(r)* are the radial distances of

the boundary nodes from scaling center, and r is a distance
measured from the crack-tip along the ray. The angle 6 and the
distance 7 are constants for a given radial direction of a given
element.

After substituting Eq. (23), Eq. (20) becomes

oEm) =2 72 + {0
+{AsF 2 2+ +A,f%f1}r%_l

S a0 24
i=0
Eq. (24) is similar to Williams’ expansion of the stress field,
Eq. (17) at 6 =0. Thus, the stress intensity factors and T-stress
can be computed by equating the coefficients of first and second
terms with ~1/2 and 0 powers of r of Egs. (24) and (18) as
follows.

Stress intensity factor for mode [ is
K;=c(o, )\/‘2.7rrA (25)
T-stress is

T =c(d,) (26)

These equations indicate that the SIFs, T-stress of the
Williams’ series can be directly calculated from SBFEM.

4. Numerical Examples

In this section, the proposed SBFEM formulation was
applied to exacting fracture parameters, SIFs and T-stress, of a
crack specimen under different loading and geometric condition.
The following four fracture specimens were simulated.

i) Double edge-cracked tension (DECT) specimen,

ii) Center crack circular plate (CCCP) specimen

iii) Three point bending cracked (TPBC) specimen, and
iv) Square hole cracked plate (SHCP) specimen.
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The analyses were carried out using plane strain condition
with Young’s modulus £ = 1.0 and Poisson’s ratio v = 0.3. Unit
thickness was assumed for all the specimens. Only a half of
TPBC specimen and quarter of DECT, CCCP and SHCP
specimen (hatched portions in schematic diagrams) were
modeled by virtue of symmetry. The discretizations employed in
this study consisted of three-node iso-parametric quadratic line
elements on the boundary as in Ref. ¥, The scaling center was
placed at the crack-tip in SBFEM mesh and, therefore, the
straight crack face and the face ahead of the crack-tip were not
discretised.

4.1 Double edge cracked tension (DECT) specimen

In the first example, a rectangular panel with a double edge crack
under uniaxial tension loading opat top and bottom was
considered. The schematic diagram of the problem is presented in
Fig. 3 (a), where H and W are plate dimensions and a is the crack
length. The problem was analysed with an aspect ratio i.e., H/W =
12. The applied load was & o= 1 with its units consistent with that
of E. The analysis was carried out with four different refined

NANEREER NN

®)
Fig. 3 (a) Schematic diagram and (b) a typical SBFEM
mesh for DECT problem

Table 1 Comparison of computed SBFEM r1esults for
DECT (HW =12)

a/W  Sources Tioy B Kjoyfm)"

0.3 SBFEM (Present) -0.5329 -0.4813 1.107
SGBEM o -0.5326 -0.4780 1.114
Kimzf)cPalﬂino ) 05384 -04444 1212
Fett -0.5319 -0.4720 -

0.5 SBFEM (Present) -0.5532 -0.4765 1.161
SGBEM -0.5521 -0.4725 1.169
Kim & Paulino ™ .0.5597 -0.4454 1.257
Feit®

-0.5216 -0.4396 -

' meshes - coarse with 22 degree of freedoms (DOFs), medium

with 42 DOFs, fine with 82 and very fine with 162 DOFs, by
doubling the number of elements. The emrors of normalized SIFs
computed from these meshes for a/W = 0.5 were 19.78, 2.86,
1.27 and 0.68% respectively. The medium mesh discretisation for
H/W =3 is given by Fig. 3 (b).

The results of normalized SIFs, Kyoy(ma)", normalized
T-stress, 7/ 0, and biaxiality ratio obtained by using Egs. (25),
(26) and (19) from very fine mesh with H/W = 12 are presented
in Table 1. For H/W =12 case, the computed SBFEM results are
compared with the results from Refs. ™ % 2 These
comparison shows that SBFEM results are in good agreement
with the corresponding reference results.

4.2 Center crack circular plate problem

Second example is considered a center crack circular plate

Fig. 4 (a) Schematic diagram and (b) a typical
SBFEM mesh for CCCP problem
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Table 2 Comparison of computed SBFEM resulis of
normalized T-stress; /oy, for CCCP

a/R
0.2 03 04 05 06
Present -0.066 -0.1705 -0290 -0.448 -0.672
Fett™ 008 -0171 -0293 -0.457 -0.688
% Diff 1713 029 1.02 197 233

(CCCP) with a uniform radial tension oy as shown in Fig 4 (a).
The problem was also analyzed with four different meshes with 5,
10, 20 and 40 elements with 22,42, 82 and 162 DOFs. The eror
percentages of normalized T-stress computed from these meshes
for a/R = 0.3 were 16.8, 5.02, 1.36 and 0.29 % respectively. The
medium mesh configuration of the problem to compute the
Tstress is as shown in Fig. 4 (b). The problem was analyzed to
evaluate the T-stress for varies crack length. The relative crack
size, a/R, was varied from 0.2 to 0.6.

The computed results of T-stress normalized by applied
stress, T/o, from very fine meshes are presented in Table 2.
These SBFEM results are compared with the values presented in
Ref. . The comparison shows that SBFEM results are in
agreement with the reference values with 2 percentage deviations
except for a/R = 0.2 case.

4.3 Three point bending cracked problem

Third example is the analysis of three point bending beam
with single edge crack at the middle. The schematic diagram and
a typical SBFEM model used for analysis are given in Fig. 5,
where L and D are the span and depth of beam respectively and a
is the crack length. The applied point load per unit thickness was
P = 1 unit at middle as shown in Fig S (a). The problem was
analysed to compute the SIF and T-stress with span to depth ratio
L /D = 4. The relative crack length, a /D, was varied from 0.1 to
0.7, and D was taken to be 4 unit in the numerical computation.

The stress in the specimen O is defined as

oM
Og = F (27)

®)

Fig. 5 (a) Schematic diagram and (b) analysis model of
three point bending cracked problem

Scaling center

where M is the bending moment per unit thickness in the
central cross section which is equal to PL/4 for pure bending case.
The computed results of the normalized SIFs, I(I/do(m)m,
and the normalized T-stress, 7/ 0y, are presented in Table 3.
These SBFEM resutts of the normalized STFs are compared with
that of HCE method from Ref. ¥ and the results obtained by
Guinea et al. Y, while the computed normalized T —stress are
compared with the results obtained by Levers and Radon ® and
HCE method from Ref. ?. The comparison shows that SBFEM
results are in an excellent agreement with the literatures data.

4.4 Square hole cracked square specimen

The analysis of stress intensity factors in a rectangular plate
with cracks emanating from a sharp-comered square hole under
biaxial loading was considered as a complex crack problem in
this paper. The configuration is as shown in Fig. 6 (a ). A typical
SBFEM model with boundary conditions is as shown in Fig. 6
(b) and the parameter used for analysis are as following.

Table 3 Comparison of computed SBFEM results of normalized SIFs and normalized

T-stress.
Normalized SIF Normalized T-stress
a/D Present HCE?  Ref® Present HCE” Ref®
0.15 0.264600 0.265517 0.268 -0.28800 -0.28933 -
0.2 0.309067 0.308833  0.312 -0.23527 -0.23553 -0.285
0.3 0.402717 0.402167  0.405 -0.12920 -0.12933 -0.12
0.4 0.523167 0.523283  0.527 -0.00433 -0.00367 0.02
0.5 0.701967 0.701947 0.706 0.17493 0.177867 0.18
0.6 0.994367 0.994367 1.000 0.48587 0.489133 0.38
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Fig. 6 (2) Schematic diagram and (b) analysis model of square hole cracked square plate

Table 4 Comparison of computed SBEEM results of normalized SIFs

A=0 A=1 =-1

a/W  Present BEMZ? FError Present BEM 2" Error Present BEM?  Error

% % %
030 1.2518 1.2743 1.77 0.9793  0.9983 1.90 1.5244  1.5503 1.67
0.35 1.3199 1.3222 0.17 1.0852 1.0911 0.54 1.5547 1.5533 -0.09
040 1.3742 1.3743 0.01 1.1677 1.1741 0.55 1.5806 1.5745 -0.39
0.50 1.5041 1.5021 -0.13 1.3319 1.3401 0.61 1.6764 1.6642 -0.73
0.60 1.6664 1.6622 -0.25 1.5155 1.5247 0.60 1.8172  1.7997 -0.97
0.70 1.8716 1.8657 - -0.32 1.7400  1.7509 0.62 =~ 2.0031 1.9805 -1.14
0.80 2.1714 2.1681 -0.15 2.0634  2.0807 0.83 22793 22555 -1.06
0.85 2.4098 2.4148 0.21 23170 23443 1.16 2.5027 24853 -0.70
0.90 2.8072 2.8337 0.94 2.7328  2.7841 1.84 2.8817  2.8833 0.06

Plate dimension H=W=8§,

Dimension of square hole,b=1,

Applied stress, oy = 1,

Load factor, . =0, 1, -1, (Fig. 6(a)), and

Material properties, E = 1and v = 0.25
All the units are consistent with the unit of E.

The problem was analysed by three different discretizations of

6, 12 and 24 elements with 26, 50, 98 DOFs respectively. The
error percentages of normalized SIFs computed from these
meshes for a/W = 0.4 were 4.5, 1.9 and 0.39 % respectively. The
estimated results of fine mesh (98 DOFs) are summarized in
Table 4, for various configurations of crack. To verify the
accuracy and efficiency of SBFEM, the normalized SIFs that
were evaluated by present SBFEM formulation are compared
with those of reference solution from Ref. 2; Ref? uses BEM,
which consists of crack-tip hybrid displacement discontinuity
clements. All the cases that are given in Table 4 are in good
agreement with the reference solutions with less than 2%

deviation, Fig. 7 presents the comparative graph of the computed
results with literatures (BEM) values.

Fig. 7 Comparison of normalized SIFs results
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5. Conclusion

In this paper, scaled boundary finite element method was
applied to various crack problems to demonstrate the efficiency
and accuracy of the method. The fracture parameters that are not
only of the inverse square root singular term - SIFs but also of the
constant non-singular terms - elastic Tstress, of the stress fields
near crack-tip were computed using a simple and direct
formulation proposed by authors. Using the proposed formulation,
SIFs and Tstress for a crack can be evaluated directly by
comparing the classical linear elastic field solution in the vicinity
of a crack-tip to that of SBFEM after power series expansion. The
accuracy of these formulations were examined with four different
example problems for a range of crack sizes, loading and
geometry and compared with the available solution in literatures.
It can be seen that the numerical results obtained by the SBFEM
formulations are in remarkable agreement with the corresponding
ones in the literature for simple and complex crack problems.
Based on the results of the study it can be confirmed that the
proposed numerical method can be applied to. crack problems
more easily with relatively coarse and simple model than other
computational methods for more complex crack problems.

This paper dealt with straight crack problems because of its
unique advantage that omits the discretisation of the straight crack
faces and face ahead of crack. The proposed method can be
applied into more complex crack problems such as curved crack
and concaved domain problems. To analysis these complex
problem, sub —structuring with more than one scaling center is
required due to one of the restrictions of SBFEM that the entire
domain boundary must be visible from scaling-center.
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