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Adaptive Monte Carlo filter was developed to identify structural parameters of systems with

non-stationary dynamic characteristics. The concept of the forgetting factor multiplying to

the process and observation noises is applied to Monte Carlo filter. The forgetting factor is
defined as the ratio between two probability density functions. The advantage of this
algorithm is that the identification can be conducted by the different combinations of two
forgetting factor for adaptive Monte Carlo filter. The validity and effectiveness of the

proposed approach has been verified by three cases using by the adaptive process and

adaptive observation noises. The Monte Carlo filter and the adaptive Monte Carlo filter are

applied to identify dynamic characteristics of a single degree of freedom system.
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1. Introduction

System identification refers to determination of the
analytical models of systems from the observation or
experimental data™” . Structural identification of dynamic
system subjected to the earthquake motion has been focused on
the accurate prediction of structural response as well as damage
assessment. Especially, the stochastic methods have generally
been used to predict the unknown parameters of any dynamical
structure systems.

Over the last few decades, structural identification
techniques using Kalman filter” and Monte Carlo filter” have
been developed in some useful forms for solving many
practical problems in civil structures.

Because the Kalman filter was firstly developed by the
assumption of linear system with Gaussian uncertainty, its
application to real system sometimes has not been working
well. On the other hand, the Monte Carlo filter can be applied
to nonlinear and non-Gaussian state space models widely.

Because the identification for the system with
non-stationary dynamic characteristics depends upon the past
observation data, these recursive filters do not have a sufficient
time tracking ability for non-stationary change of structural
parameters. Thus, results from identification appear low

accuracy for structural parameters. To overcome this problem,
adaptive H infinity filter”’, adaptive Kalman filter”, and
adaptive Monte Carlo filter™® were suggested by the adaptive
model identification techniques”.

In this study, the new adaptive technique is applied to
Monte Carlo filter using the concept of the adaptive process
noise and adaptive observation noise. The developed algorithm
is applied to identify dynamic characteristics of a single degree
of freedom system. The identified values are compared with
the values obtained from Monte Carlo filter.

2. Monte Carlo Filter

In Monte Carlo filter (MCF), the state transfer and
observation equations are described as follows,
X, = Fxe,w,) 1)
Y =H(x,v,) @
where, Fand H are arbitrary functions, w is the process
noise vector defined by an arbitrary probability density
function s(w) , and v is the observation noise vector
defined by an arbitrary probability density function #(v) .
MCF is an algorithm to approximate probability density
functions by the large number of their realizations named as
particles or samples. And, the state variable vector is defined by
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many realizations.
Thus, in the MCF, we can approximate a probability

density function p(x) using samples W (1:1,2,...,1) as
defined by

p(x) =%i5(x —x1) G)
=1

in which & is the Kronecker’s delta. Samples, x,((?k, are
generated based on p(x, |Y,) which is the probability
density function of sate vector X, under the condition that
the observationdata ¥, =(¥,,¥,, -, ¥, ) isgiven.

If we have samples, x,({i)” «1 » the one step forward
prediction of samples, x,((i‘),ﬁl, are obtained using the state
transfer function,

xlil))k—l = F(x](cl—)l\k—l > Wz(cl)) 4
The above Eq.(4) is called the time updating process in MCF.
Substituting the formula given by Eq.(4) into Eq.(3), the

approximation  of  probability  density  function,
p(x, | Y,_;).can be obtained. This is named as prediction

process and proved as follows:

p(x 1Y, )= J‘J.P(xkaxm Wi | Yy dx,_dw,

= j'jp(xk L xyo1s Wi Ve ) p(xy Wy 1Y) -
dx, dw,

- Hé'(xk - F(x,_,,w, ))%anﬁ(xk_l —x,((’_)uk_l),(5)
i=]

5(wk ~w) Mx,_dw,
[ ;
:_25()% -xigi_l)
n i=1
After obtaining the observation y, at time k , the

process to obtain the probability density function p{x, |Y,)
is called the filtering which is obtained by,

P(xs Y | 1)
P 1 1)

_ PO XY p(x 1 Vi)
JP()’k X Y p(xg [ Y ) dxy

px | Y ) =p(x [y, X)) =
(6)

Substituting Eq.(5) into Eq.(6) we obtain
1< ;
PO X Y) " 25(xk - xl(r{lz—l )
POy | )= 1 = @)
J.p(J’k | X0, Y) " Za(xk - xl&?l)(-l )dxk
i=]

Theterm p(y, | x;,Y,_;) is the probability density function

of observed vector y, provided the state vector X is given.

Because this distribution finction is defined by the observation
error distribution this can be expressed the simple form

of p(y, | x,) . If we evaluate this probability distribution
function for a fixed y, , this expresses the likelihood of the

state vector X, . If we define the likelihood for a sample

X s qf) = p(yk ]x,((’|)k“1),Eq.(7)yields,

n (i) )
e 1Y) = =L | s{x, ~x0),)

=1
i Z q/((l)
i=1

@®
n (0
=2 ay” sl —xih ). @ =
i=1 z q ]((i)
i=1

To calculate g\ = P<Yk I x,((i‘)k_l ) in MCF, we need the
following relationship between the observation noise vector
v, and state variable vector X, as well as the observation

vector y, expressed by a function G that is differentiable

with respect to the observation vector y, as follows,

vk:H_l(xk>yk)=G(xkﬂyk) &)

Then, the likelihood for each sample, g\ = p(yk |x,(c")k_])

is obtained by,

(10)

‘Iil) = P(J’k l xl((l\)kq ): ”(G()’k ,x;((ii_x )) g

This is called the observation updating process in MCF.

Based on the above derivation MCF consists of the
following recursive algorithm to obtain one step-ahead
prediction and filtering.

Step 1. Generate the initial distribution of state variable vector
as k-dimensional random number assuming an arbitrary
probability density function:

X é\l(; ~ Po (X )5
Step 2. Repeat the following steps at each time step

i=1---,n
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Fig.1 Adaptive observation noise distribution

Fig.2 Adaptive process noise distribution

(a) Generate samples obeying the probability density function
of system (process) noise:

w/(ci)Ns(w)s i:17'“3n
(b) Compute the particles to estimate predictor density using

the state transfer equation:
X0 = () (f)
Xia = O s W),

(c) Compute the likelihood of each particle by
g =P 1%, )= Al S )) —

()
ki

i=1,-,n

(d) Generate n filtered samples x by resampling of

k‘ k , (=L,...,n) as proportional to the likelihood of each
sample:
(1) o
» Xl with probabzln‘y q, /Z/ 1‘“
Yo =
xl(("';)_l with probabzhty q\” q,E 2

Step 3. Return to step 1 until the end of time step

3. Adaptive Monte Carlo Filter

The basic concept of adaptive MCF is to increase the width
of distribution characteristic of particles (samples) so that the
re-sampled particles in MCF algorithm can well track the

changes of dynamic characteristics of a system by using some
hypothetical distribution.

In order to increase the width of the distribution
characteristic, the weighting as forgetting factor is multiplied to
the observation noise and process noise. The forgetting factor is
defined as the ratio of probability density functions between the
hypothetical distribution and the baseline distribution of
This hypothetical
distribution, which is generated by multiplying the forgetting

observation noise or process noise.

factor to the baseline distribution, can be named as the adaptive
observation noise distribution or adaptive process noise
distribution. The basic concepts of adaptive observation noise
and adaptive process noise are shown in Fig.l and Fig2,
respectively. In these Figures, the bold solid lines indicate the
distributions of the adaptive observation noise and adaptive
process noise, and the solid lines indicate the baseline
distribution of the observation noise and process noise. And,
ro(vy) and s,(w,) represent the probability density
functions of adaptive observation noise and adaptive process
noise, respectively.

3.1 Adaptive Observation Noise

The probability density function p(y, |x,,Y,_;) in the
filtering process plays an important role to generate filtered
samples. If the likelihood is  evaluated by
Po(Vi lxy, Y,y ) instead of p(y,|x;,Y,_;) we have the

following relationship to evaluate the likelihood of each
sample,

Pyl x, Y, )
PoWi 1%, Y, )
PoVi 1%, Yey) ’ an

=d, po(Vy | %, Yi)

Pl X, Y )=

in which, d; =p(y|x, V) Po(Vilxe.Yiy)
This value is a correction term for evaluating the likelihood of
particle by the distribution p, (v, |x,.Y,_,) -

Substituting Eq.(11) into Eq(6) we obtain a new
expression of the probability density function p(x, |Y,) as
follows:

PO XY ) E D S =xi0)
_[P(J’k I X, Yk—])%zll S(x, —xlgl\l)(—l )x,
d,po(Vi 12 Y ) P(x | Y)
 [depoi Lz Yo )pey 1Yepds, (12

plx [ Y) =

n d(")a(')

a =)
= Z,:ldk 9

n
= Z al’S(x, ~ x,(("zfl )

i=1

O (xy xl((’v)( 1)
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in which, /" and g/"is
the likelihood

Doyl )c,(('!),(_1 )} which is defined by a new observation error

=@/ A"

of the state vector evaluated by

density distribution 7, (V).
3.2 Adaptive Process Noise

In the prediction process defined by Eq.(5) the probability
density function, p(x,,w, |Y,_;) plays an important role
and the probability density function of the process
noise, (W, ), is essential to calculate this probability. If we

select a proper process noise denoted by s, (W, ) to evaluate

process noise. p(x,,w, |Y,_;) isobtained by,

Px W | V) =px | B )s(m)
=P | 1) (kk))so(wk)
o A(M%'}) | (13)

—% Sow —uh))

——26( X, —

Iv (
:; Zé(xk xkl)]Jk 16 (’)5( “&)
i=l

Xk 1
seb))

el = s(wi)) /sy (w§),) sand w() is the
adaptive process noise vector of each particle.

Substituting Eq. (13) into Eq. (5), the time updating
process for the case of using process noise §,(W,) is
obtained by,

(x| Y )=— 25(xk F(xk = 1aWok))C(l)

i=]

in  which,

(14)
- _zc;”a(xk —x)
n i=1

The Eq.(14) expresses the time updating process for adaptive
process noise.
Conducting same calculation given through Egs.(7) to (8)

on P(x,|Y,) wecanobtain,

1 ;
P lxk,%])hzj(xk xl((‘/)( 1

x| Y)= 1
Jr 1w Y 7 0 i,

(15)

n ) (
S 9 CI}(
S(x —x,)

= Xik-1
UG !
2 ; Ce Gk

To combine adaptivity in the filtering process with the

adaptivity in prediction process we use Eq.(11) to evaluate the

Table 1 Dynamic structural property

Mass 1.0 (ton)
Stiffhess 157.75 (KN/m)
Damping Coefficient 1.256 (KN-sec/m)
Damping Ratio 0.05
Damped Natural Period 0.5 (sec)

Table 2 Initial and process noise distributions

e Process Noise
Initial Distribution o
Distribution
Displacement N(0, (1.0 N, (10%?)
Velocity N0, (1009 N(@©,(10%)
P—
amang N(c, (c*0.03¥) N (0, (c*0.003))
coefficient
Stiffness N (K, (k*0.03Y) N0, (k*0.003)

function, p (v, |x,,Y,;) inEq.(15), then the final result to
approximate the probability density function, p(x,|Y,),

is expressed as follows:

PO 1% Y Dp(x 1Y)
AR AR AL AR

x| X)) =

1 i i
dypo Vi 1 X5 Yoy ); Z;l ¢ 8(x, _xl((\l)c—l )

= 1 l
Idkpo()’k ka’Yk—l); z; Vo, - xk\k 1), (16)

n d(’) (’)
(1)
S(x; ~ X k- 1)

Z’ d(/) (/) (/)
—2@1)5(% xl((?/)(

3 H (i _ (i) (1) =(1) (N~ l—(l)
inwhich, £ = (d{cg")/ 3" d

Consequently, the adaptive Monte Carlo filter (MCF) is an
algorithm to constraint the effect of the past observation data by
controlling the adaptive process noise and observation noise.
Controlling both or one of forgetting factors ¢{” and d (" for
time updating and observation updating processes, we can
obtain the identified structural parameters that do not depend
on the past observation but depend on the observed data at the
nearest time.

For the adaptive MCF, the three cases can be considered.
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First case is the case that the forgetting factor c¢{” is only
applied to the time updating process and resampling process of
MCF. The second case is to apply the forgetting factor d !

for the observation updating process and resampling of MCF.
And, the third case is to consider the factor ¢{" for the time
updating process and the factor o IE" ) for the observation

updating process of MCF, simultaneously.
4. Numerical Simulations

Consider a single degree of freedom (SDOF) system of a
shear building model subjected to earthquakes. The responses
of structure system are firstly simulated by decreasing the
initial stiffness 20% and by increasing the initial damping
coefficient 15%, at 5 seconds after the excitation starts. El
Centro (NS, 1940) earthquake motion is inputted. Then, the
observational structural responses, which consist of relative
displacement and relative velocity, are obtained by adding a
white noise with 3% of standard deviation to the simulated
structural responses. These structural responses are used to
identify the unknown parameters using MCF and adaptive
MCF. The dynamic structural properties are tabulated in Table
1. The damage is assumed that the stiffness decreases from
157.75 to 126.2 KN/m and the damping coefficient increases
from 1.256 to 1.444 KN-sec/m.

4.1 Identification using Monte Carlo Filter

To conduct the identification for the stiffness and damping
coefficient using MCEF, the initial distribution and process noise
distribution are defined by the Gaussian distributions as shown
in Table 2. The state variable vector consists of relative
displacement, relative velocity, damping coefficient, and
stiffness. The number of particles is 2000.

The sub-covariance matrix of observation noise for MDOF
system can be defined by,

R =" a7
sub )

where, r1 and 2 are the components corresponding to
displacement and velocity of the system, respectively. Thus, the
covariance matrix of observation noise is defined as a diagonal
matrix of sub-covariance matrix as following,

R=diag[R,,,;] ,i=1,---,ndof (18)

where, ndof'is the number of degree of freedom system. In the
case of SDOF system, the covariance matrix is equal to the
sub-covariance matrix. In this study, »1=10000 and r2 =100 are
used.

200 | —— True value
180 — Identified value |
S
160 :
120
100
0 2 4 6 8 10
Time (sec)
2 s
L R W """"""
1 .
05 '
0 2 4 6 8 10

Time (sec)

Fig.3 Time histories of identified stiffness (upper) and damping
coefficient (lower) obtained by MCF
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Fig.4 Time histories of identified stiffhess (upper) and damping
coefficient (lower) obtained by adaptive process noise
(forgetting factor = 0.99)
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Time histories of mean stiffness and damping coefficient
are shown in Fig. 3. The stiffness value is converged to the true
value in some interval whereas, the damping coefficient is
converged any constant value but somewhat fluctuated time to
time.

This means that the stiffness identification is more robust
than that of damping coefficient. In general, identification of
damping coefficient is not stable comparing with stiffness
identification because the sensitivity of damping is related to
velocity response whereas that of stiffness is related to
displacement response.

As shown in Fig.3, the tracking ability is not enough to
trace the sudden changes of stiffness and damping coefficient.

4.2 Identification using Adaptive Monte Carlo Filter
(1) Adaptive Process Noise

In this case, the forgetting factor is applied to the process
noise distribution as shown in Table 2, and it is fixed to a
constant value with time progresses. In order to apply the
forgetting factor, we consider two standard deviations, 4 and B
that indicate the standard deviations of the adaptive process
noise and the baseline process noise, respectively. The relation
of A and B can be represented by the forgetting factor as
following,

A:—l—B:/iB e, =c (19)
Ck
Generally, the forgetting factor exists the range of between the
value of 0 and 1. In this case, we obtained the good result when
the forgetting factor is close to 1, such as 0.9 or 0.99.

Fig.4 shows the time histories of stiffness and damping
coefficient when the forgetting factor is 0.83. Comparing with
the general MCF, the stiffness and damping coefficient quickly
trace their abrupt change. And, their identified values are
converged their true values but the convergences of unknown
parameters are somewhat slow.

(2) Adaptive Observation Noise

The forgetting factor is also a constant value that does not
change with time. In this case, we can expect better result than
the previous cases by changing directly the magnitude of the
given covariance matrix that is regarded as the covariance of
the observation data.

Let us consider a new covariance matrix of adaptive
observation noise, R'. The new covariance matrix can be
represented by,
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Fig.5 Time histories of identified stiffness (upper) and damping
coefficient (lower) obtained by adaptive observation noise
(forgetting factor = 0.9)
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Fig.6 Time histories of identified stiffness (upper) and damping
coefficient (lower) obtained by adaptive observation noise
(forgetting factor = (.5) and adaptive process noise (forgefting
factor =0.5)
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R'=aR=(a-D)R+R=(d, + R (20)

where « isaconstant; a=(1+d,).

Since the stochastic characteristics of the observation data
have mean Hx, and its covariance R under the condition
ofaconstant x, , the likelihood of each particle of predictor is
calculated by applying the new covariance matrix,

. 1 |
ool L]
J@ma)"|R| 2a @)

Ji =0 _Hxl(;l)(—l)TR%(yk _Hx£§z~1)

Using Egs. (20) and (21), we conducted the identification for
different forgetting factors. We obtained a good result when the
forgetting factor is close to 1.

The time histories of the stiffness and damping coefficient
are shown in Fig5 when the forgetting factor is 0.9.
Comparing with the ordinary MCF, we can see the better
tracking ability for the stiffness and damping coefficient. Both
of the stiffness and damping coefficient are well converged to
the true values.

(3) Using Adaptive Observation Noise and Adaptive
Process Noise

In previous two sections, the identification is performed by
two different techniques. The result using an adaptive
observation noise is better than those of the ordinary MCF and
adaptive process noise.

In this case, two forgetting factors are applied to verify the
effectiveness the developed adaptive MCF. In the case of using
two forgetting factors which used in previous two cases, the
number of resampling may be decreased due to samples of
small likelihood ®. Thus, the identification is conducted by two
forgetting factors equal to 0.5. The identified time histories of
the stiffness and damping coefficient are shown in Fig.6. As
shown in Fig.6, the identification of stiffness follows the abrupt
change and converges to the true value quickly.

5. Conclusion

The adaptive Monte Carlo filter (MCF) was developed to
identify parameters of the system with non-stationary dynamic
characteristics using the adaptive process noise and adaptive
observation noise. The validity and effectiveness of the
developed adaptive MCF was verified by using three cases
defined by two different forgetting factors.

As the results of three cases, the identifications of stiffhess
and damping coefficient obtained using the adaptive MCF

converged rapidly and effectively trace the abrupt change.
And, in the three cases of adaptive MCEF, the identified values
of unknown parameters obtained from using case 3 were better
converged than other cases.

The proposed algorithm can be used to identify the
damaged by external With
comparing the results from MCF and three cases of adaptive
MCEF, the identified stiffness values obtained from the both
techniques were well converged. For the identified damping

characteristics excitation.

coefficient, it was not converged to its true value at all in MCF,
whereas it was converged its true value but somewhat slow in
case 2 of developed adaptive MCF. Thus we can conclude that
the adaptive MCF is more efficient than MCF for identifying
the system with time-varying stochastic characteristics.

In general, the changes of dynamic responses of a damaged
structure may be certainly seen at the time that system
parameters of the structure undergo their sudden or abrupt
change. Thus, it needs to develop an algorithm that the
forgetting factor activates when the abrupt changes of system
parameters of the structure are occurred, with time progresses.

References

1) Safak, E., Adaptive modeling, identification, and control of
dynamic structural systems. I: Theory, J. Engrg. Mech.,
ASCE, 115(11), pp2386-2405, 1989.

2) Masri, S. F, A hybrid parametric/nonparametric approach
for the identification of nonlinear systems, Probabilistic
Engineering Mechanics, 9, pp47-57, 1994.

3) Kalman, R.E., A new approach to linear filtering and
prediction problems, ASCE Journal of Basic Engineering,
82D(1), pp35-45, 1960.

4) Kitagawa, G, Monte Carlo filter and smoother for
non-Gaussian nonlinear state space models, Journal of
Computational and Graphical Statistics, 5(1), ppl1-25, 1996.

5) Sato, T. and Oi, K., Adaptive H _ filter : its application to

structural identification, Journal of Engineering Mechanics
Division, 124(11), pp1233-1240, 1998.

6) Sato, T. and Takei, K, Development of a Kalman filter with
fading memory, Structural Safety and Reliability,
pp387-394, 1998.

7) Sato, T. and Kaji, K., Adaptive Monte Carlo filter and
structure of the first
International Conference on Monte Carlo Simulation,
Monte Carlo, Monaco, pp441-447, 2000.

8) Yoshida, I. and Sato, T., Health monitoring algorithm by the
Monte Carlo filter based on non-Gaussian noise, Journal of
Natural Disaster Science, 24(2), ppl01-107, 2002.

(Received September 17, 2004)

identification,  Proceedings

- 477 -



