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Free vibration characteristics of cylindrical shells partially buried and suspended on elastic
foundations are presented by means of the hybrid finite element method. Shell governing
equations based shape functions in the longitudinal direction are used instead of the usual
simple polynomials. The non-uniformities of the foundations in the circumferential and
longitudinal directions are handled by a Fourier series and an element mesh strategy,
respectively. Effects of the foundation arrangements, length of the gap, and foundation
parameters on the natural frequencies of the vibrating systems are investigated. Results for
both symmetric and asymmetric vibrations are presented systematically.
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1. Introduction

In practical applications, cylindrical shells are found in the
form of tanks, water ducts, pipes, and many others. These
shells are widely used because of their strength characteristics.
Therefore, investigation of the dynamical behavior of the shells
becomes a great importance in the design of such structures.
The present paper deals with the free vibrations of cylindrical
shells partially suspended on elastic foundations. The shell is
placed over a gap so that only parts of it are resting on the
foundations.

Lakis et al'® has developed the hybrid finite element
formulation of cylindrical shells based on the analytical shape
functions which are derived from the shell governing equations.
Yang” has investigated the whole buried pipelines in the elastic
foundations subjected to sinusoidal seismic loads by using the
finite element method. Free vibrations of the whole buried
cylindrical shells in Winkler and Pasternak foundations have
been studied thoroughly by Palliwal e al.* using the direct
solution to the governing equations of motion. However,
cylindrical shells are generally laid on or placed in the elastic
foundation so that the foundation only covers certain parts of
the shell in the circumferential direction. Free vibrations of
cylindrical shells simply supported at both ends with a
non-uniform elastic foundation in the circumferential direction

have been investigated by Amabili ef ol based on the
Rayleigh-Ritz method. By using the method, formulations need
to be modified extensively if other boundary conditions are
prescribed at the ends of the shells. Morcover, the elastic
foundations have to be assumed uniformly distributed over the
whole cylinder length in the longitudinal direction. Gunawan
et al.” has studied the static and free vibration characteristics of
cylindrical shells partially buried in the elastic foundations
based on the finite element method where the usual simple
polynomials have been used as shape functions in the
longitudinal direction. However, excessive number of elements
has been used in order to have converged solutions.

In general, the foundation is not uniform due to ground
contour irregularities. For an extreme case, the shell may be
suspended across a gap. Reference related to the problem of
cylindrical shells partially suspended on the elastic foundations
is not available. Therefore, this paper presents the dynamic
characteristics of the problem undergoing the linear free
vibration by using the hybrid finite clement method. In the
analysis, the discretization is conducted by dividing the shells
into ring shaped elements so that the present method can be
directly applied for shells with a non-uniform distribution of
the foundations either in the longitudinal or in the
circumferential direction. The effects of foundation parameters
and length of the gap on the natural frequencies are



(a) Geometry

(b) Generalized model
Fig.1. Geometry and generalized model

systematically presented for both symmetric and asymmetric
vibrations. Many numerical results for different arrangements
of the foundations are given in this paper.

2. Analytical Model and Formulation

The structure is an isotropic thin elastic cylindrical shell
with Young’s modulus E, Poisson’s ratio », radius of the
middle surface R, thickness #, and length /.. The foundation is
represented by contimuous elastic (axial, circumferential, radial,
and rotational) springs on a limited arc. In the analysis, the
spring coefficients are assumed to be constant along the
enclosed arc. The axial, circumferential, radial. and rotational
spring coefficients are K, K., K. and Kj, respectively. ¢; and
- are the angles that define the enclosed arc. The geometry of
the structure and the generalized model with reference
directions are shown in Fig.1.

The displacement of a point on the middle surface in the
axial, circumferential, and radial directions are indicated by u,
v, and w, respectively. The rotation angle /5 is defined as the
first derivative of w with respect to x. The displacement
functions which include the symmetric (superscript S) and
asymmetric (superscript U) deformations with respect to the €
=0 are given by:

u(x,0) = f [ U3 (x) cos(mg) + U} (x) sin(m0)|
v(x,8) = i [VS (x) sin(m@) +V (x) cos(mB)J

J M
w(x,0) = [Wm x) cos(mH)+W () sm(mﬁ)]

3
S

B(x.6)= Z[ (x) cos(m@) + B (x) sin(m6)

=0

N

]

where M is total mumber of circumferential waves used to
truncate the series.

For the sake of brevity, the formulation is explained only for
a symmetric system. Formulation for the asymmetric system
can be derived analogously as that of the symmetric one. The
longitudinal shape functions are assumed to be in the form of:

U, () = 4, e
1°(x)= B, et/
W3 (x)=CS etk

@

where 4, B>, and C} are constants for a typical
circumferential wave, m. u, is the characteristic value which
can be found by substituting Eq.(2) into the following Sanders
equations of thin cylindrical shells:

K@y, W) =0, Buv, =0 Bwr.w=0 @)
where %, %, and %4 are the differential operators of the shell
equations (without the foundation) in the axial, circumferential,
and radial directions. Details of the operators may be found in
the papers by Lakis ef al."**. On the substitution of Eq.(2) into
Eq.(3). three simultaneous linear equations in 4>, B> and
(3 can be obtained. For a non-trivial solution, determinant of
the coefficient matrix has to be zero. After simplifications, for
m#= 0, the eighth order characteristic polynomial can be
obtained and given below:

28: ami/urin = O
i=0

where a,,; is the coefficients of the polynomial. Solution of
Eq.(4) leads to eight complex characteristic roots (u,,,;, where j
=1,2,3 ... 8). As the constants 4, B, and C® are not
independent, the complete longitudinal shape functions can be
rewritten as follows:
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3 the global equation can be written as
Usxy=>as, Cs ek
g Kd=wo’Md ®
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where @), and y,, are constants. It is worthwhile to
mention that the asymmetric system leads to the identical
characteristic polynomial as for the symmetric system (Eq.(4))
so that ) = p,, = u,,. a,, =a,,. but y, =-y, . For
m = 0, the system is separated into torsional and non-torsional
systems. Details on the formulation can be found in the paper
by Lakis et a/.” and therefore is not explained here.

Finite element discretization is done in usnal way to derive

the stiffness and mass matrices of a shell element:

K, =L B'DBdA: M, :p]V NN dV ©®)
and the stiffness matrix of the foundation:
K, =| Nk, N4 )

where B, D, N, kg, and p are the matrix which links the strains
to the displacements, an elasticity matrix, the total shape
function matrix, a diagonal matrix containing the foundation
distribution functions, and mass per unit volume of the shell,
respectively. Full explanations on this matter can be found in
the paper by Gunawan ef al.”.

In the analysis, the non-uniform distribution of the
foundation in the longitudinal direction is discretized by the
element mesh strategy as in the finite element method. Finally,

where K, M, d, and @ are the global stiffness matrix, the global
mass matrix, the total nodal displacement vector, and natural
frequency of the vibrating system, respectively. For
convenience, the non-dimensional frequency parameter
02 =wl|p(1—-v*)/E isused through out this paper.

3. Convergence Studies

Although it is not shown here, convergence of the results
depends on the total number of elements (VS) and the total
number of circumferential waves (). In term of convergence,
NS is more significant for shells with small values of R/7. and
R/h, while M is more significant for shells with large values of
R/L and R/h. Based on the investigation, Af = 20 gives good
accuracy to the results. Numerical calculations were carried out
to investigate the convergence behavior of the solution as a
function of the total number of elements, NS. For comparisons,
the results obtained by using the simple polynomials” as the
longitudinal shape functions are also presented. The
computations used the following parameters: v = 0.30, K, L/E =
0.003, and ¢, = ¢ = ¢ = /3. The shell is assumed to be simply
supported at both ends and the foundation is considered to be
uniformly distributed over the whole cylinder length.

Convergence behaviors of two different geometries of shells
are presented in Fig 2. From the figure, it can be concluded that
the hybrid formulation gives a better convergence behavior. In
addition, the shape functions based on the shell governing
equations are still applicable for the problem under
consideration. However, the behavior of convergence for first
mode obtained by the hybrid method for relatively small and
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Fig 5. Variations in £2 with » for different values of K,L/E. (CC, R/L = 0.20, R/h = 100, and ¢ = 7/3)

thick shell (Fig.2.(a)) at NS = 4 is different from the other 366.3(360.2) Hz. The values in parenthesis correspond to the
modes. It exhibits a numerical error due to large values of z4,x  Tesults obtained by Amabili et a/.”. The resuls are in good
for the given shell parameters. agreement.

The next example compares the results with those obtained

by Amabili et al®. The shell considered had the following 4. Numerical Results
properties: v = 0.30, £ = 206 GPa, p = 7800 Kg/nr’, R = 300

mm, L = 1000 mm, # =3 mm, K, = 1.18x10"° N/m® and p= In this section, cylindrical shells partially suspended on the
7/2. Natural frequencies for the first four modes are elastic foundations were analyzed. Four different cases which
230.5(227.8) Hz, 231.2(230) Hz, 327.8(326) Hz. and correspond to different arrangements of the foundations are
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Fig.7. Variations in £2 with # for different values of R/A. (SS, R/L =0.10, K, L/E=0.002, and ¢ = 7/3)

presented. The variations in the natural frequencies with the
length of the gap and with the foundation parameters are given
in order to asses the dynamical characteristics of the shells
under consideration. In all figures and tables, the length of the
gap is represented by #L where # is the gap parameter. 7 = 0
corresponds to the case of the shell resting on the elastic
foundation and # = 1 represents the shell in the air. Two types
of boundary conditions are considered, namely SS and CC
which correspond to simply supported and clamped at both
ends, respectively. Unless otherwise stated, the computations
used the following parameters: v = 0.30, K, = K, = Kz = 0,
Ko#0, 01 = 0= ¢, NS=20, and M/ = 20.

4.1, Case 1

Fig.3 shows the shell partially suspended on the elastic
foundations. The gap is located at the middle.

For the first computation, a shelt with CC, R/L = 0,20 and
R/h =100 is analyzed. Fig4 shows the variations in 2 with #
for different values of ¢. As » increases, {2 gradually decreascs.
Both symmetric and asymmetric vibrations show a similar

behavior. Fig.5 shows the variations in 2 with # for different
values of K,,L/F.

The second computation was carried out for shell with .SS,
R/L =010, R/h =100, and n = 0.5. Fig.6 shows the variations
in Q with k (= KLE = KLE = K,JLIE= K/(EL)) for
different values of ¢. The axial, circumferential, radial, and
rotational springs are included in order to provide an
appropriate boundary condition for a clamped edge. The figure
presents the effects of the foundation parameters and gives a
validation to the present results at the same time. It is clear
from the figure that as k increascs, &2 increases. For a
particular case when ¢ = 7 and extremely large values of k,Q
coincides with £ 57, the natural frequency parameter of shell
(without foundation) clamped at both ends with 0.5L in length.
In other words, clamped boundary conditions are simulated by
applying extremely stiff springs.

Fig.7 shows the effects of thickness on the variations in £2
for the shell with given parameters. In the figure, the left and
right hand side scales correspond to the results for R/h = 20 and
Rih = 200, respectively as shown by the arrows. It can be seen
that the decrement rates are different from each other. The



First asymmetric mode Second asymmetric mode
Fig 8. Radial mode shapes. (SS, R/L = 0.10, R/h =20, K,L/E=0.002, and ¢ = 7/3)

First asymmetric mode Second asymmetric mode
Fig.9. Radial mode shapes. (SS, R/L = 0.10, R/h =200, K,,L/E = 0.002, and ¢ = 7/3)
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Table 1. First mode. Table 2. Second mode.
(R/L.=0.10, R/h =50, and K,,L/E = 0.002) (R/L=0.10, R’/h =50, and K,,L/E = 0.002)
£2,/63 £2,/62
n [ S8 cc n @ SS cC
symmetric | asymmetric | symmetric | asymmetric symmefric | asymmetric | symmetric | asymmnetric
76 1353 1.185 1.064 1.030 76 1.158 1.205 1320 1.220
0.0 3 1.402 1.468 1130 1.095 00 73 1348 1254 1395 1.541
2 1.598 1.658 1171 1.282 2 1.562 1.485 1.710 1.603
76 1.352 1.184 1.064 1.030 6 1.158 1.204 1.320 1.220
0.2 3 1.401 1.466 1.130 1.095 02 73 1.346 1.253 1.394 1.540
w2 1.596 1.656 1170 1.282 w2 1.558 1482 1.708 1.603
w6 1343 1177 1.063 1.030 w6 1.152 1.193 1311 1213
04 3 1.390 1.455 1.127 1.093 04 w3 1.329 1.249 1385 1.528
72 1.580 1.642 1.167 1.276 72 1.527 1.460 1.686 1.589
6 1315 1.156 1.061 1.028 76 1135 1.158 1270 1.184
0.6 3 1356 1421 1.115 1.087 0.6 3 1274 1233 1.33% 1.465
2 1.531 1.598 1.151 1.250 2 1.446 1388 1605 1516
6 1242 1110 1.053 1.024 76 1.093 1.095 1.169 1.115
08 73 1272 1338 1.085 1.071 0.8 3 1173 1.181 1222 1304
w2 1419 1.476 1.114 1.182 2 1315 1.253 1.404 1334
10 - £ =0259 §=0447 1.0 - £ =0454 £=0492

Note: £2, corresponds to the value of €2 for a shell with gap parameter »

(@) Symmetric

(b) Asymmetric
Fig.11. Radial mode shapes. (First mode, SS, R/ = 0.10, R/h =50, K, L/E = 0.002, 9 = n/3, and = 0.6)
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Fig. 12. Case 3.
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Fig. 17. Distribution of the enclosed angles.

(a) First mode, 2= 0.1760 (b) Second mode, £2=0.1783

(¢) Third mode, Q= 0.2331 (d) Fourth mode, £2=0.2378
Fig 18. Overall radial mode shapes, (SS, R/L=0.20, R/ =200, K,L/E=0.003, and n = 0.4)

decrement rates at small values of 5 for shells with small values mode shapes of shells with given parameters for various values
of R/h were found to be greater than those of shell with large  of #7. In the figures, the thickest line represents the enclosed arc.
value of R/A. Fig.8 and Fig.9 show the variations in radial



4.2, Case2

The second case is represented by Fig. 10, where the
K.L/E=0.002. §2,/ £, of SS and CC with various values of
and ¢ are presented in Table 1 and Table 2 for the first and
second modes, respectively. In contrast with the results for SS,
the values of €2,/ £, of CC for second mode are larger than
those for first mode. Fig.11 shows the radial mode shapes of
shells with the given parameters.

4.3. Case 3

In this section, the shell shown in Fig.12 is assumed to be
simply supported at both ends with the following parameters:
R/L=0.10 and R/h = 50. The results of &2 for different values
of ¢ and K, L/E are plotted against the gap parameter 7 in
Fig.13 and Fig 14, respectively. Similar distributions can be
observed as those in the previous cases. Fig.15 and Fig. 16 show
the variations in £2 with # for different cases. From the figures,
it can be concluded that case 1 is the most sensitive.

4.4, Case 4

In this section, a numerical example of shell partialty
suspended on non-uniform elastic foundations in the
longitudinal direction is presented. The shell is assumed to be
simply supported at both ends with the following parameters:
R/IL =020, Rth = 200, K, L/E = 0.003, and # = 0.4. The
distribution of enclosed angles in the longitudinal direction is
given in Fig.17. The values of ¢, and ¢. at ns—th element were
discretized to have a constant value across the element. Fig.18
shows the overall radial mode shape of the problem.
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