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Static and free vibration analyses of cylindrical shells partially buried in elastic foundation

were conducted by means of finite element method. Foundation is modeled by continuous
elastic springs and distributed circumferentially on limited arc by expansion of Fourier series.
Formulation of foundation stiffness matrix was done by observation of the relationships
between coupled harmonic terms. Applicability of present method to analyze considered
problem subjected to any arbitrary loads and end conditions is verified. Free vibration analysis
of chosen simply supported cylindrical shells was carried out. Variation of natural frequencies
with certain geometry of the shells is presented systematically for axisymmetric structure.
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1. Introduction

Cylindrical shells laid on the soil as a foundation are
commonly used in many engineering fields in the form of
structural components because of their strength and
effectiveness. With such important roles, cylindrical shells
should be analyzed adequately and reliably, especially for safety
issues related to their dynamic behavior. Simple and wide
applicable method is needed to perform such analysis. Many
papers have been published for beam type structures. Free
vibration of cylindrical shells without the existance of
foundation can be found in text book written by Seide” while
many publications have been made for dynamic problems of
cylndrical shells in the air. Yang” has investigated the
completely buried pipeline subjected to sinusoidal seismic load
using shell element to model the pipe. Free vibration of whole
buried simply supported cylindrical shells in Winkler and
Pasternak foundation has been studied extensively by Paliwal™*
using direct solution to the governing equation of motion for
shells. In practical applications, cylindrical shells are embedded
partially in the elastic foundation. This yields a more
complicated problem. The fiee vibration of simply supported
cylindrical shells with non-uniform elastic bed and mass has

been investigated by Amabili™® based on Rayleigh-Ritz method.

In his paper, both mass and the elastic bed have to be assumed
distributed uniformly on the whole cylinder length in

longitudinal direction. In this study, application of finite element
method for cylindrical shells partially buried in elastic
foundation is studied and tums out to be a useful method for
static and free vibration analysis. Present method is applicable
for any arbitrary loads and end conditions. Effect of relative
stiffhess between shells and foundation to the natural frequency
distribution is presented here. Characteristic of vibration in term
of alteration of sectional mode has been investigated.

2. Analytical Model and Formulation

The structure is modeled by an isotropic thin elastic
cylindrical shell with modulus elasticity £, Poisson’s ratio v and
geometry of R, t and L for radius, thickness and length of the
shell, respectively, which is assumed to be free from local
instability such as buckling,

Soil as a foundation is modeled by continuous elastic spring
attached on a limited arc surrounding the periphery of the shell in
axial, circumferential, radial and radial slope direction as shown
in Fig.1(a) for generalized model.

K. K., K. and Kj are axial, circumferential, radial and
rotation spring stiffhess, respectively. ¢ and ¢, are angle
corresponding to left and right of the enclosed arc. The geometry
of model for the problem is shown in Fig.1(b).

The proposed method is based on finite element method. The
displacement functions are defined by summation of product of
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(a) Generalized model and reference direction

(b) Geometry of the structure
Fig 1. Generalized model and geometry of structure

simple polynomial in x with sinusoidal function in 8 for a general
problem as given in Eq.1) for axial, circumferential, radial
displacement and radial slope, respectively. Radial slope, f is
defined as the first derivative of w with respect to x.
Axisymmetric and non-axisymmetric corresponding functions
are labeled by superscript S and U, respectively.

x

u(x,0)= mzo{oll,f (x) cos(m@)+a,’ (x)sin (m@)}
v(x,0)= Aﬁo{/s (x) sin(md) + %, (x) cos(mo)}

Moy s U . M
w(x,6)= ”EO{%; (x) cos(m0)+2,” (x) sin (m0)}
B(x,0)= 3 {3 (x) cos(mb) + Y (x)sin(m6)}

0

3
I

Axial and circumferential displacements are defined by linear
polynomial in x, while radial displacement is expressed by third
order polynomial.

Eq.(1) can be written as
1= L] o), v foet ) @

in which [N°], and [NY], are axisymmetric and
non-axisymmetric shape function matrix for typical term m.

2.1. Cylindrical Shells

The strain displacement relationship” is given by
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which includes three strain components &, &3 & of the middle
surface and three curvature changes ., xs X« By using Eq.(2),
Eq.(3) can be written as

{8} - n%OHZBS :|'" {ses}m +|:BU :|m {SeU }m} - [B] {se}
)
Stiffhess matrix for cylindrical shells can be derived by using

[Ks]=/:[B]' [D][B] a¥ ®)

inwhich [D]isa 6 x 6 elasticity matrix.
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One can arrange the sub-stiffness matrix [K],,,, for typical
term m and # as given by

(], ol[5*]  [5°] [p1[B"],
[8V], [01[p*], [8], [p][8"]

[Ks],, =l dr

m n

@)

Due to the well-known orthogonality property, uncoupled
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system between axisymmetric and non-axisymmetric can be
expected, so that the upper right and lower left sub-matrix in
Eq.(7) are completely vanished under any combination of m and
n. By the same reason, harmonic term m and # are uncoupled, in
the sense that only elements corresponding to m = » do have a
value under integrals. Final form of cylindrical shells stiffness
matrix for typical harmonic term » and # is given by

ke, [

[Ks]m_n = [0] [Kgu L,n )

For the free vibration analysis, mass matrix of cylindrical
shells can be defined by

[M]=p [, [N]' [N]d¥ ©)

where p is mass per unit volume of the shells and

= £ ([w] [N] )

m=0

Sub-mass matrix of cylindrical shell for given term m and n
can be written as

[MS]m,n = p j‘V ":"

(10)

By similar procedure as for stiffness matrix, the mass matrix
of the cylindrical shells can be reduced to

M, L

M e,

an

in which the integrals of the remaining element in the matrix
give value only when m = n. Eq(11) again shows uncoupling
axisymmetric and non-axisymmetric system for mass matrix of
the shells.

2.2. Foundation

Soil as a foundation can be modeled by axial, circumferential,
radial and rotation spring attached to the surface of the shells on a
limited arc. Spring stiffness value is assumed to be constant
along the limited arc.

In present method, generalization of element in

circumferential ~ direction is  definitely necessary, but

unfortunately the distribution of spring is not uniform over the

circumference. Method described here can overcome this
problem by defining the foundation distribution function which
is valid for any points in circumferential direction and at the
same time describing the existence of springs at considered
point.

For this purpose, Fourier series is used to define the
foundation distribution function along the circumference
because of its capability of defining any kind of functions. The
foundation distribution function is given by

K w '
x5(6) :70{(,0 +(§{a/ cos((G)+b, 51n(£9)}i| -
where a, = o+, 4 = sin(£gy ) +sin((,)

2 {

A cos (L, )—cos(Lp, )
;=
{

in which £ stands for the Fourier harmonic term in describing
the foundation distribution and & (= u, v, w, ). Eq.(12) took
place in the [K¢ matrix as shown in Eq.(13) for corresponding
direction.

0 0

0 0

K, (0) 0 {13)
0 x4(0)

Repeating the similar procedure which is used to obtain
Eq(7) and Eq.(10), the foundation stiffness matrix can be
written by

[Ke]=,[N] [k ] [N]da (14)

Since [k¢ matrix also contains trigonometric term in £ , again
more elaborate observation to the nature of integrals has to be
performed in order to derive the foundation stiffhess matrix.
Final form of the matrix for given term m and n can be written

(15)

For an axisymmetric problem (¢; = ¢,), in this case only
considering the structure’s axisymmetric, upper right and lower
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left sub-matrix in Eq.(15) are reduced to zero matrix for any
possible combinations of term m, nand (. in other words, the
foundation  stiffnress matrix of axisymmetric and
non-axisymmetric are uncoupled each other. This can be verified
by assuming symmetric distribution of foundation so that ¢, =
@2 = @, then the sine term in Eq.(12) will be completely vanished
because b, = 0 and observation can be focused on the constant
term and cosine term only.

For non-axisymmetric structures (¢ # @), the whole system
of foundation stiffness matrix can be expected as previously
given in Eq.(15). As been realized that the constant and cosine
term in Eq.(12) play an important role in determining each
element in upper left and lower right of foundation stiffness
matrix, the sine term in the same equation gives contribution in
determining the value of each element in upper right and lower
left matrix of foundation stiffhess matrix. The coupled system is
taken part for a non-axisymmetric structure.

Different from stiffhess matrix of shell, foundation stiffhess
matrix forms couple system either between deformation system
or between harmonic term m and ». Only for symmetric
structure () = ¢,), the foundation stiffness matrix is reduced to
uncoupled system, but still shows the coupling phenomenon of
harmonic terms.

In the calculation of Eq.(12), only a finite number of terms
say L, in the truncated series are taken into account. NL = 20,
M= N =10 and total number of element NS = 40 are used for
numerical analysis in the next sections, based on the
convergence studies which are not shown here. Analyses were
carried out by consideration to radial spring stiffess only (X, =0,
K.=0,K,#0,K;=0).

3. Static Analysis

Numerical examples for static analysis were carried out for
gravity load case as shown in Fig.2. In all the calculations, the
following parameters were used: #/L = 0.001, v =0.30, ¢; = ¢, =
@ = 60", and g¥E = 5 x 10°%, where ¢ is gravity load per unit
area.

yyyyyy

Y
G/
Fig.2. Gravity load cases

Fig.3 and Fig4 show the overall deformation of shell for
both clamped and simply supported edges with R/L = 0.05.

The effect of end conditions to the displacement on the top
edge of the shell can be seen in Fig.5, which is plotted against

ratio of L/R. For the cylindrical shell with small value of L/R, the
effect of end conditions can not be neglected.

R/L=0.05 P1=0= =60
1L =0.001 K, L/E=0003
»=030 ¢IE=5x10*

Fig.3. Clamped cylindrical shell on elastic foundation

RIL=0.05 O == p=60°
/L=0.001 K, L/E=0.003
0=0.30 GIE=5x 10"

Fig.4. Simply supported cylindrical shell on elastic foundation

Clamped - clamped

- - - - Simply supported

NS=40, M=10

middle section 10" wEA(g'L)
(5]

Radial displacement on the top edge of

5] N ’ R/it=50
\ 4 _

] \ P v=030
63 VoS K, =6+ 10" kN/m'

1 ’ o
71 ‘s @, =p,=¢=60
‘8 T T T T T

0 20 40 60 80 100

L/R

Fig.5. Effect of end conditions

The radial displacement on bottom, side, top and
circumferential displacement on side edge at middle section are
plotted against dimensionless value R/L with different
foundation stiffhess (only considering radial spring) for both
clamped end conditions in Fig.6 to Fig.9. For cylindrical shells
with small value of R/L, shell is penetrated into foundation
without much deformation occurred in the shell as shown in
Fig.6 and this result is supported by Fig.7 and Fig 9.

Radial displacement on top edge shows relatively fluctuated
curve which is caused by alteration in sectional mode of
deformation as can be seen in Fig.8.
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Radial displacement on botiom edge

Fig 6. Variation of radial displacement on bottom edge with

R/L for different K, .L/E
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Fig 8. Variation of radial displacement on top edge with R/L
for different K,,L/E

4. Free Vibration Analys|

is

For free vibration analysis, eigensystem can be written as

follows:
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(16)

where  is the natural frequency.
Proceeding section covers the axisymmetric vibration of

cylindrical shells on elastic foundation. The symmetric
distribution of foundation is able to separate the whole system in
Eq.(16), and then an axisymmetric system can be reduced to

i=ln=0
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Fig.7. Variation of radial displacement on side edge with R/L
for different K,.L/E
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Fig.9. Variation of circumferential displacement on side edge
with R/L for different K, .L/E

The above two equations can be solved for the natural
frequencies and modes by any available algorithms. The

resulting vector is corresponding to the amplitude of

displacements at specified node for typical harmonic term.
Natural frequency, @ for shell with different thickness

parameters shows some fluctuations as can be seen in Fig,10 to

Fig.14 for the first five modes.

2.5+
Simply Supported, 1-st Mode
10'K LVE=30
2.0 R /1= 0.001
MERCI - - --/L=0.003
@ 0=030 VL =0005
o 157 LN e /L= 0.007
) AT N e L=0009
[
Ns ]O_
0.5
0.0 . . . ——
0.00 0.05 0.10 0.15 0.20
RL

Fig.10. Variation of first natural frequency with R/L

for different /L
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L 0K LE=30
. 1
6 [ Lo =e=e= 60°
5] Foh L v=030 —— 1L =0.001
[<3] 2 —
N FARE! - - --yL=0.003
EE Aoouvy o YL =0.005
= A VL =0.007
“g 3“3 y : e L= 10.009
2] o
14
0 T T T T
0.00 0.05 0.10 0.15 0.20

Fig.11. Variation of second natural frequency with R/L
for different #/L
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Fig.12. Variation of third natural frequency with R/L
for different #/L

35_; Simply Supported, 4-th Mode
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Fig.13. Variation of fourth natural frequency with R/L
for different #/L
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Fig.14. Variation of fifth natural frequency with R/L
for different /L
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Fig.15. Changes in sectional mode shape for first frequency

(L =0.001)
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Fig.16. Changes in sectional mode shape for first frequency
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These fluctuations are caused by changes in significant
sectional mode shapes as can be seen in Fig.15 for #L = 0.001
and first frequency. In the figures, sectional modes with notation
R and C show the radial and circumferential displacements of
the middle section. Only magnitudes of displacement are plotted
in sub-figure for convenient, without any physical meaning
especially for circumferential displacement. This argument
holds for different thickness parameter (Fig.16) and also true for
higher modes, as given in Fig.17 for second frequency.

8_ R Simply Supported
73 «\T/ 2-nd Mode
] FN v=0.30, #L =0.007 Fig.18(b). Second axisymmetric vibration mode
6 { R K L/E=0.003 ) 5
] N " . (w'mp L/ E=1754)
e . 0, =9,=¢=60
R o
[ 3
‘e 3
2 E -
E e
B N N
0 T T T T
0.00 0.05 0.10 0.15 0.20
R/L

Fig.17. Changes in sectional mode shape for second frequency
(¥L=0.007)

For the first five frequencies, overall mode shapes of simply
supported cylindrical shell on elastic foundation are given in
Fig.18 for R/L = 0.05, ¥L = 0.001, v = 0.30, K,,.L/E = 0.003 and
¢ = ¢ = ¢ = 60°. Present method is applicable to observe Fig.18(c). Third axisymmetric vibration mode
transversal and sectional vibration modes simultaneously. (mp I’/ E=3.038)

Fig.18(a). First axisymmetric vibration mode Fig.18(d). Fourth axisymmetric vibration mode
(w’mp L’/ E=0.573) (*mp LY E=3.791)
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Fig.18(e). Fifth axisymmetric vibration mode
(’zp L*/ E=4865)

Variation in the first and second natural frequencies with
foundation parameters such as K., and ¢ (= ¢; = ¢,) are shown
in Fig.19 and Fig.20 for given parameter of R/t =200 and Rt =
10, respectively. For cylindrical shells with large value of R4,
linear distribution of e’ can be expected at small value of K,.L/E
but in the same curve, for relatively larger value of K,L/E,
changes in K,//E value are become less sensitive to the square
of natural frequency as shown in Fig.19 for first and second
frequency. In contrary, cylindrical shells with small value of R/
show linear distribution of square natural frequencies which can
be seen within the considered range of value K,.L/E as shown in
Fig.20. For vibration system under consideration, relationship
between natural frequency and relative stiffiess can be written
as

KK K

=28
we

The numerator in Eq.(19) consists of generalized stiffness of
shell (K¢ and generalized stiffness of foundation (K,.), while
the denomyinator is generalized mass of shell (Mj ). « appearing
in Eq.(19) is the relative stiffhess ratio (o = K TK).

0.15
3 Simply Supported, 1-st Mode
0141 RL=020
I =0.001 p=90"
0131 v =030
gy
<0124 o
~ =75
% .
T p= 60
=3 P 45‘
0.104 =30
=15

0.09

T p=0
008 T T T T T T T T T T T 1
00 01 02 03 04 05 06 07 08 09 10 1.1

10°K L/E
Fig.19(a). Variation of first natural frequency with
foundation parameters (R/ = 200)
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Fig.1 9(b). Variation of second natural frequency with
foundation parameters (R/f = 200)
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Fig.20(a). Variation of first natural frequency with
foundation parameters for (R = 10)
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Fig.20(b). Variation of second natural frequency with
foundation parameters (R/ = 10)
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Simply Supported, 1-st Mode
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Fig.21. a— K, relationship for first frequency (R = 200) Fig. 23(b). Second non-axisymmetric mode

(w'mp L’/ E=0437)

Simply Supported, 1-st Mode -
R/L=0010
/L =0.001 = 60"
v =030

OI T T T T T T T T T T 1
0.0 0.1 02 03 0.4 05 06 0.7 0.8 09 10 11
10°K L/E

Fig.22. o.— K, relationship for first frequency (R = 10)
Fig.23(c). Third non-axisymmetric mode
(*mpl*/ E=1224)

The relationship between « and K, is similar to that one
between «” and K,,.. For the first mode, the relationship between
relative stiffness (@) and K, for different ¢ is given in Fig.21 and
Fig.22. a— K, relationship can be expressed by a single straight
line for cylindrical shells with small value of R/t (Fig.22), while
for large value of R/, this relationship can be approximated by a
piecewise linear distribution.

Finally, to show the applicability of present method to assess
the non-axisymmetric vibrations, simply supported cylindrical
shell with R/L =0.05, /L =0.001, v =030, K,,L/E=0.003, ¢, =
30° and ¢, = 60° is analyzed. Overall mode shapes of the first
three frequencies with their middle sectional deformation are

Fig.23(a). First non-axisymmetric mode given in Fig.23 in which, thick line on the periphery of the shells
(’mp L*] E=0.366) as shown in each sub-figure refers to the part of the shell which
is covered by foundation.
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5. Conclusions

The present method has been shown to be useful for the
static and free vibration analysis of cylindrical shells partially
buried in elastic foundation. Numerical studies indicate the
advantage of proposed method. Boundary conditions can be
applied in the calculation in straightforward manner. By using
proposed method, the fluctuation of the ground surface in the
longitudinal direction can be modeled by simple element
meshing strategy.

The principal conclusions of this study, especially for free
vibration analysis are summarized as follows:

(1) For fixed value of #/L, parameter R/L gives significant
influence to the variation of natural frequency.

(2) Changes in sectional mode shape can be expected for
increasing value of R/L.

(3) For cylindrical shells with large value of R/, o’ - K,
relationship can be expressed by a piecewise linear distribution.

(4) The relationship between «” and K, can be expressed by
a single straight line for cylindrical shells with small value of R/z.

The existence of inner and/or outer fluid in some practical
applications, especially in the pipelining field, leads to the
interactive problem between fluids and structures which had
been neglected in this basic study. The coupled fluid-structure
analysis will be the main task for further studies.
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