Journal of Structural Engineering Vol.49A(March 2003)

JSCE

Vibration Simulation of a Rail-Sleeper-Ballast System
on Layered-Ground under Train Loads

Hirokazu Takemiya*, Bian Xuecheng **

*Dr. of Eng., Professor, Dept. of Environmental and Civil Eng. Okayama University
(Tsushima Naka 3-1-1, Okayama 700-8530, Japan)
**Ph.D. Candidate, Dept. of Environmental and Civil Eng. Okayama University,
(Tsushima Naka 3-1-1, Okayama 700-8530, Japan)

A computation approach has been developed to investigate the dynamics of a rail-sleeper-ballast-ground
system under movmg train loads. The interacting train and track are both modelled as the dynamic systems.
The total system is divided into two substructures for the analysis: The track system and the ground system.
The dynamics formulations are solved using the Fourier transform. The present solution is differed from the
total system analysis, which has been developed previously by assuming a continuous interface all along the
track direction. Illustrative example case studies are presented, based on the available track components

properties and ground profile.
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1. Introduction

In high-speed railway transportation, in order to
guarantee the safety of train operation and to reduce train
induced nearby ground vibration, it is important to predict
the track vibrations in view of the critical speed that are
characterized by resonance velocities at which the surface
wave energy accumulates under the train wheels either in
rails or in supporting ground. Most of the related works are
theoretically based on the continuous contact assumption
between wheels and rails and ground. Even simplification of
these elelemets gives first engineering insight ‘into the
related mechanics. But it should be further elaborated for
thorough understanding of the dynamics of track and
ground system.

Train track dynamics have been dealt with practically
by a beam model on the Winkler foundation. In the
elaborate theory, however the ground has been idealized
either by a half s 8g)ace or a layered system®? or a stack of
layers™ > 9 79 for the wave propagation in subgrade
subsoil media. In case of a half space assumption, the wave
field is predominantly governed by the Raleigh wave, so
that when the moving load speed approaches its Raleigh
wave velocity, an extraordinary response occurs. In case of
a layer/layers assumption, on the other hand, the dispersive
nature appears and the wave field is governed by the modal
waves®. The modal waves can be characterized by different
wave speeds for different frequencies. The energy
transmission is carried out by the modes that are most
concerned with the situation. There exists a situation in
which higher modes come into a major contiibution and the
response feature changes drastically from that for a half
space.

In the previous works, the wave number-frequency
solution method has been utilized. For a moving load of a
constant speed ¢, the wave number in the moving direction

is related to the frequency decisively by & = w /c. For a

system with discrete sleeper supports, the forces from
sleepers act spatially in discrete on the ground according to
those positions”, Therefore, the solution method should
better be developed in the space-frequency domain in order
to take into account of the coupled motions through sleepers.

In what follows, the author presents the substructure
formulation for a rail-sleeper-ballast-ground system. In the
track model, the rail is treated as a Euler beam discretely
supported, via rail pads, by rigid sleepers. Below each
sleeper, layers of soil including embankment are accounted
for to model the ballast and the ground. The mass, stiffness,
damping values and the sleeper spacing of the track system
can be arbitrarily varied, so that the properties of track
components and ground profiles can be taken into account.
This solution may be differed from the previously
developed total system analysis by the first author and
others by assuming a continuous interface all along the track
direction.

2. Track Modeling and Formulation

In order to facilitate the analysis of train tracks of
discrete supports by sleepers, we apply the substructure
method by dividing the whole system into a Euler beam
analysis for rails and the elastodynamics analysis for the
supporting ground. Fig.1 illustrates the model.

2.1 Train Loading
Consider a moving train comprising N numbers of cars.

The successive axle loading due to the train passage along
the x-axis with a constant velocity ¢ is described by
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fu(x—ct) =§fn(x-cr—2Le,,) W

n

in which f,(x—ct-

contribution by the mass movement whose detail expression

L,, ) indicates a single n-th car

is

Moving Load f,d(x - ct)
Moving Speed

anN-1
Sleeper
‘L V32 agN 1 agN

\ Layered Soil

Half-Space, /

Fig. 1 The Compound Track/Ground Model

f(x—ct,y,z,t)=
Jub(x—ct+Ly )+ f,0(x-ct+A, +L,)
+ f0(x—ct+A,+B,+L,)
+ f0(x—ct+A,+B,+L,)

@

Fig. 2 Profile of train wheel loads

with f,; and f,, defining respectively the axle loads from
the front and rear bogies, L,, is the respective car length

and Lo is the reference position ahead of the first axle load

position. A4, , B, are the distances between axles (see Fig.2).

The J(*) denotes the Dirac’s delta function for an impulse

loading. The frequency domain representation after the
Fourier Transform is then

Fr(500) =008, ~2)1(5,) @)
where
fu(5) -

5y id,E, i( A, +B, )8, (24, +B, )&, (4)
Z{f,,l(ue' ) fp (eI TR )y

2.2 Track modeling

A pair of rails is modeled by a Euler beam (see Fig.1).
The governing equation for a moving load f(¢) therefore
can be expressed by

&u o’u

El—+m

du N
o T tCi = f(t)5(x-ct)+2am(t)5(x -x, )

)
where EI denotes the bending rigidity of a pair of rails,
m for the mass per unit length, and C, for the material

damping factor. The second term defines the reactions from

the ground. N is the number of the sleeper supports
involved. is the moving load on the rails, a,, is the reaction
forces at sleeper supports, x,, (m=1, 2, ... N) is the location

of sleepers along the track.
Applying the Fourier Transform to Eq.(5) with
respect to the coordination x and time t, we get

(EIE —w’m +iwC, ™ (E,w) = f (& -w)+ ia;(w)e"%

m=]
()
When Eq.(6) is solved for u*(£,w)

u(§w)=G"(&w)[ f'(&- w)+Ea (w)e ]
™

1
Xt = 8
G (6m) (EIE* -w’m+iwC, ) ®

where

The superscript ‘¢’ indicates the value in the Fourier
transform domain with respect to time and the superscript
“x’ the corresponding value with respect to space coordinate

e

First we get the Green function in the transformed
domain of the Euler beam from Eq.(7) for unit moving
load fo6(x—ct) . To simplify the formulation of Green

function, the internal damping effect of rails has been
included into elasticity 'modulus E*. The inverse
transformation back into the space domain is performed by
applying the counter integration with the residue theory,
The explicit form is derived as

G'(x0) = [ G*(5 0k >ds

1 [ -alx .—iQ]x|]

®

1
where @ =(mw?/E'If, E'=E(1+i2¢) with &
being the damping ratio of rails.

With use of the Green function of Eq.(9), the solution
for the moving load and the support reactions are
formulated by the convolution integral form. Then the
response due to axle loads with a given moving speed c is
obtained straightforwardly from Eq.(7). Taking the inverse
Fourier transform of Eq.(7) with respect to the wavenumber

u'(x,w)=F(x,w)- Ea (w)G'(x-x, ,w) (10)
m=l

where
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fo
F(x,0)=——"2_
(xe) 4EIcQ’

Fl(x,w)-Fl(x,w)
xXIF2(x,w)-F2(x,w)
+FI(x,,w)~FIl(x,w)

xsx_, a1

X ,SXSX,

where x_, and X the distance range of the train moves,

+o0?
are introduced for the sake of the numerical computation to
limit the negative and positive infinities in x, and

(x-9)a-i2  ix0-ya-Zy) )
¢ <
Fl(x,0)=5 —+ ¢ — (12)
-0-i2 _o-2
f'od c
(~x+)0=i2  i(-x2ey0-Zy)
e < e
F2xw0)= * 13)
W @
2 -i— Q-
c c

For the discretely supported rails, the displacement at the
sleepers’ positions of Eq.(10) is extended into

W (xp0)= F(x,0)- 30,(0)G' (5, -x,0)  (14)

m=l

The matrix G’(x - x,,, ) defines the Green function
matrix, and the force vector F(x;,w) is obtained for the

train axle loads in Eq.(4). The Eq.(14) is now given in a
matrix form

U=GA+F (15)

where, G is the matrix of G'(x, —x,,w ), and
Us=[u'(x,0)u'(x,@) ... u'(xy,0)] (16)
F=[F(x,0)F(x,,0)..,F(xy,0)] an
A=[a(w)a(w)..ay(w)] (18)

The response due to the ground reactions through sleepers is
obtained after solving the interaction system with the
ground as in what follows.

3. Ground Medeling

In order to make the formulation easy to understand,
first the formulation is introduced with Winkler spring, then
the layered effect of ground are implemented into the

" formulation.

3.1 Elastic Winkler foundation

Generally, the ground is considered as the Winkler
foundation, and we can get the support stiffness at the
location of sleepers as the equivalent value for a sleeper
span area. Then the equivalent ground stiffness becomes a
constant, K, =adw , where ¢ is the Winkler spring

coefficient, d is the distance of adjacent sleepers along the
track direction, W is the width of track. Then, the ground
deformations at sleeper’s positions are provided by

u;roumi (xi’a)) =a; /Kcon:.' i = 1’2""N (19)

Now the displacement compatibility is applied for all
sleepers in consideration.

W (%y0)= F(3,0) = 3.0, (0)G"(x, - 5,,0)

“~ (20)
=a,/K_,, i=12..N
After rearranging, Eq.(20) is rewritten as
G(x,—xl,a))+K1 - G(x;-X,,0) G(x; ~xy,0)
G(x, —x,w ) G(x, -x,,0)+ - G(x, ~xy,0)
G(xy -xp,0 ) G(xy = %,,w ) G(xy ~xy,0 )+
L const |
a(w)] [F(x,o)
: @D

xda, (w)l=1F(x ,0)

a;,(a)) F(x,vrw)

Using the Gauss linear elimination method, from the

equations above, we can solve for the sleeper reaction:
a, (i =1,2,..N) in frequency domain.

u(x,w)=F(x,w)—iam(a))G(x-xm,a))

m=l

(m=12.,N) (22

To get the solution in time domain, we applying Fourier
Transform method with respect to frequency, for which the
FFT algorithm is actually used.

3.2 Ground Modeling by Layered Soils
The ground is modelled by layered soil with

individual properties. The values within each layer in this
paper, see Fig.3.

Sleepers
o &z 2 7o) (#2]
agy an Agi AgN-1 AN
Ug1 Uga 1 Ugi UgN-1 UeN
Z3
2 Py Uy Py Uy,
3‘ Py, Uy, P;, U, Layered Soil
M
Half-Space

Fig. 3 Layered Ground Model
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The formulation starts with the Navior’s equations. The
original three-dimensjonal wave field is first decoupled into
the P-SV wave field and the SH wave field. These wave
fields are formulated by the layer stiffness or flexibility
techmque through the concerned layer propagator
matrix.”'® The nodes are placed at the interface of layers.
The total layer stiffness matrices are associated with the
degrees of freedom at those appropriate layer matrix order.
They are assembled and transformed into the original space
coordinates as,

})Iayers (5, w ) = Klayers (5: w )Ulayers (§1 w ) (23)

‘The global stiffness matrix of ground is assembled from the
individual layer stiffness.

K, K,
K;, K, +K121 K,
K KL+K ..
lay”(gw)_ 12 12: 11 .
Kp+Ky K
Ki KA +K™

@4

We denote u; , u; for the displacement of x
direction(horizontal) and z direction(vertical) at the ith layer

surface wavenumber and frequency domain, p; , p for
the applied load at the ith layer surface, and U taver > Prayer
for the displacement vector and load vector of each soil
layer whose definitions are

st JT(25)
. Do P ]T (26)

Xt
Ulnyer [ulx’ ulz’ uZx’ u22

xt '
I)Iayer [plx’ plz’ pr’ pZZ

In this paper, we are only interested in the ground

vertical (z direction) displacement u,, . We get the
displacement solution from Eq(23).
Upr =K (§,0)P,, @n

For computing the displacement on the location of
sleepers x; (i =1,2,..,N ), the forces in frequency domain

can be specified as:

N

P, =0, 2 a,e™,0,...,0]" (28)
Specially the vertical displacement of ground surface, u: :

u;: = KI;;erZZ(gl a))plz layerZZ(glw ) Z a; efk’-’ (29)

This solution in terms of wavenumber and frequency is
transformed into the frequency domain solution. We
therefore apply the discrete Fourier Transform with respect
to the wavenumberk .

N
- Kipu(80) Y age™™ e (30)

The compatibility of the displacement of the rails and
ground is given by

Uy, =u'(x,,0) m=12.,N (1)

so that we can get another rclationship of u; and g,

= ———f Klayer(é:’w)Za ejk(x'-x”‘)dk

2 o f KL (&w)e™ ik

m=12,.,N (32)

After applying the discrete inverse Fourier transform, we
can get

. N(ZKI;;,(kI JeHilia) )q (33)

in which, k; (1=1,2,..,N)is the discrete wave number. If
we denote

1 - jhy ( x;=x, .
Hgmi = W 2 Kla,f’er(kl )elkl( 1) (34)

then Eq(33) is expressed as

N
= 2Hgm,.ag,. , m=12,.,N (35

So, It can be assembled into a matrix form

N . .
U, (ng Hg12 Hg'uv (aﬂ
U, H, H,, g,

=| ' ' (36)
u; Hg]-j a,
_uN‘ _HgNl HgNN_ agNJ

For the convenience for expression, the sleepers are
assumed to be placed in equi-distance, d .

k,=N;;,x,.=(i—1)d,x,=(1_1)x 37

The computation of H, . is then

ami

1 & -1 k(=% }
Hgmi =F2K1ayer(kl Je 1 tHTn

1 N
== 1 ( ) ](I 1)(i-m}/ N
ayer22

N £

(38)

We abbreviate the preceding matrix as
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U ,=HA (39)

4 8778

where U, is the ground displacement vector and A, is the
ground reaction force vector

A, =[a,,a,,..a,]

4. Integrated System of Ground and Track including
Effect of Rail-pad

The railpad is considered to have a spring constant K,
and a damper ratio D, , and the sleeper has a mass M .
Fig.4 gives the mechanical model.

4

Kp

agi Ugi
Fig. 4. Railpad model
~a; =(u; —uy )K, +(u; ~u, )D, ~ (40)
-4, -a, =M i, 41)
The stiffness matrix of the ground is to be integrated
with the stiffness of railpad to lead the displacement

compatibility. The governing equation is then in the matrix
forms as

Combining the statements of Eq.(15) and Eq.(42) and
eliminating the displacement vector U , we get the equation
for the reaction forces A at the sleepers locations.

(G-H)JA=-F (44)

We utilize the linear Gauss elimination method to get
ground reaction forces at sleepers’ positions A. After the
interaction forces between sleepers, rail-pads and ground
have been obtained, and substituting these into the rail
displacement statement, then we can get the transformed
solution from Eq.(22). Further, the ground response under
an array of load at sleeper’s positions can be obtained by
additional computations.

5. Numerical Computation and Results

The foregoing formulation is implemented into a
computer code. For an illustrative computation, an actual
geometry and properties of the track and ground of Swedish
X-2000 on the West Coast line are used to simulate the
vibration induced by train loading. The train geometry is
described in Fig.l The total number of 61 sleepers are
considered beneath the rails with the rail-pads between rails
and ballast. The geometrical origin is located on the (31%)
sleeper. The motion of the load is supposed to take place
from left to right and start at the origin point, at t=0. The
sleepers are equally spaced with 0.7m distance. Two
moving speeds of the load, 70km/h and 200km/h, is
considered, which represent the low speed and the high
speed, respectively. We modelled the embankment as a
layer of comparatively stiff soil. Beneath the given soil
layer we assume a half-space, The Soil profile used here is
described in Table 1, the profile of multi-wheel axels loads

U=HA (42) in Table 2, and the geometric parameters of the track in
where Table 3
Mo’ I
H=(Mw*H, ~1) (1-——2—)H, +—=
8 K, +iaD, K, +iaD,
(43)
Table 1 Soil Profile in Computation
Soil Layer Thickness Mass Shear Velocity Vs (m/s) Poison Damping ratio
(m) Densisty C=70km/h | C=200km/h Ratio C=70km/h C=200km/h
(g/mr)
Embankment 1.4 1,800 250 150 049 0.04 0.04
Surface Crust 1.1 1,500 72 65 0.49 0.04 0.063
Organic clay 3.0 1,260 41 33 0.49 0.02 0.058
Clay 4.5 1,475 . 65 60 0.49 0.05 0.098
Clay 6.0 1,475 87 85 0.49 0.05 0.064
Half-space - 1,475 100 100 0.49 0.05 0.060
Table 2 Profile of Multi-wheel Axels Loads
Car NO.(Left P1(KN) P2(KN) A(m) B(m) I(m)
to right)
1 122.5 122.5 2.9 11.6 0.0
2 122.5 122.5 2.9 14.8 222
3 122.5 122.5 2.9 14.8 244
4 122.5 122.5 2.9 14.8 24.4
5 180 181.5 2.9 6.6 24.4
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Table 3 Rail Parameter in Computation

Mass of unit rail
per meter (kg)

Flexural rigidity
of rail (MN.m”%)

Rail-pad Spring
constant(MN/m)

Rail-pad Damping
const.(KN.s/m)

Mass of sleeper
(kg)

56.0 4.86

110

650 205

The analysis with substructure method has been
implemented in the numerical computation and there are
some sample results below. For the application of FFT
algorithm for the inverse Fourier Transform, the frequency
increment Af =0.0977 Hz is taken and the Fourier point

number is 1024. The Nyguist frequency f,,, = NAf /2 ,

therefore is 50Hz. The corresponding time increment is
At = 0.01 sec.

107 i

Vertical Displacement(m)

40 -4

Fig. 6 Vertical displacement of ground directly under
1mx1m size unit harmonic load of 60HZ

Horizontal Displacement(m)

-40

-40

Fig. 7 Horizontal displacement of ground directly under
1Imx1m size unit harmonic load of 60Hz

ity
=

Vertical Displacement(m)

10.0 40.0

20.0><(m)’30~0

Fig. 8 Vertical cut at Y=0 in Fig. 6

=< 107"

@ _

2.5

2

Horizontal Displacement(m)

10 20 ) 30 40

Fig. 9 Vertical cut at Y=0 in Fig. 8

In Fig.6, the 3D aspect of ground vibrations of vertical
motion caused by the unit harmonic load uniformly
distributed over Imxlm area of 60Hz frequency are

depicted. The horizontal component displacements are
shown in Fig.7. Fig.8 and Fig.9 are the central cut section
at Y=0 of 3D graph of Fig.6 and Fig. 7.

9.0x107
* —o— 200km/h
—<— 70km/h

6.0x10° 4

3.0x10°

0.0

Vertical Displacement(m)

—

-3.0x10° T T
0.0 0.2

T T T
0.3 0.4 0.5

Time(s)

06 0.7

Fig.10 Vertical displacement of rail at the position of a
sleeper when the point load moves by.

In Fig10 shown is the displacement time history of rails
at the sleeper's position under moving point load with
70km/h and 200km/h.
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>

-6.0x10°+

0 20 4 ) ) 100 120
Speedxt(m)
Fig. 11 Vertical displacement of rail under multi-wheel axels loads(70km/s)
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8 -6.0x10°
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g -9.0x10° -
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-20 0 20 40 60 80 100 120 1
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Fig. 12 Vertical displacement of rail under multi-wheel axels loads (200km/s)

The vibrations of rails under multj wheel loads (Table 2)
with speed of 70km/h and 200km/h are obtained from the
superposition of those corresponding with the appropriate
magnitudes and time lags and showed in Figll and Fig.12
respectively for different speed, in which the axis has been
converted to the space distribution from time.

We introduced a concept of ‘effective distance’ to
define the extent in which a number of neighbouring
sleepers are brought into the response by a moving load
passing by a focused sleeper’s position.

8.0x107 1
—e~— 70km/h
T 6.0x10°+ —%—200km/h
=
c
Q
E 4.0x10°
Q
8 )
[-%
(]
8 2.0x10°
©
9
§ 0.0 e -
-2,0x10° T
0 1 2 83 4 56 6 7 8 9 10 11 12 13 14 15 186

Sleeper No.

Fig. 13 Effect length of sleipers when the load moves by
the 32" sleeper '

In Fig.13, shown are the influenced sleepers which are
effect by the load passing by the 32nd sleeper with speed of
70km/h and 200km/h. The effective length increases as the
moving speed grows. From the numerical experiments, we
find that the effective distance is highly dependent on the
stiffness of the rails and slightly on the moving speed of the
load within the range of parameters here.

The load transmitted from the rail to the sleepers also
will be available from the results we get, which can be used
in the ground motion simulation, In Figl4, the reaction force
on the 8th sleeper when the load passes by it is presented.

8.0x10°
6.0x10°

4.0x10*

Reaction Force(N)

2.0x10*

0.0

-2.0x10* T T : T T T T ——
-0.25 0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Time(s)

Fig. 14 The reaction force of 8th sleeper when load passes
with speed of 70km/h
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When the sleeper reactions are obtained from the
stiffness matrix equation, they are substitute as the vibration-
generating source forces to evaluate the ground motion. The
displacement time history at each observation point can be
obtained from the superposition of those caused by the
concerned sleepers. For a single moving load case, the
problem can be solved by this way ; while for a series of
train load one more time of superposition should be needed
in view of the geometry of train wheels. In Fig.15 and
Fig.16, the ground motions at place 10m away from the
track center line are shown for a series of train wheels loads
with speed of 70km/h and- 200km/h respectively. The
geometry of train wheel loads is shown in Table2.

1.0x10™
-1.0x10™ -

-2.0x10™ -

Vertical Displacement(m)

-3.0x10™

Time(s)

Fig. 15 Field vibration (10m off) under train load
‘with speed of 70km/h

2,010+

0.0 -ﬂw|

-2.0x10™

Vertical Displacement(m)

-4.0x10™

T T T T
0.00 0.25 0.50 0.76 1.00 1.25 1.50 1.75
Time(s)

Fig. 16 Field vibration (10m off) under a train load
with speed of 200km/h.

6. Conclusions

In this paper, a train track and ground dynamic
interaction has been developed by the substructuring
~ technique, with an emphasis on the discretely positioned
sleepers that become the source of vibration generation in
the ground. The vertical displacements of rails and the
nearby ground are the main focus. The dynamic stiffness
method of layered ground is utilized in order to model better
the reality conditions, in contrast to the traditional
continuous Winkler’s foundation assumption. The analytical
results are obtained in frequency domain, and the time

histories of rail vibration are computed from the inverse FET
both for single and multi-axels loads. When the load moves
passing by the sleeper position, the effective distance in the
neighbouring sleepers is clarified. This effect distance is not
clearly studies in the former efforts with the assumption of
continuous spring-supports of Winkler foundation.

The computation results show that the discrete properties
of supports affect the behaviour of rail vibration more in low
frequency range than in high frequency range; Then the
discretely distributed sleeper forces become the load in turn
to simulate the nearby ground motion. In the example case,
the ground vibrations also are presented both in transformed
domain and the time histories.

The present substructure formulation may be applied to
advantage also to the extended viaduct track analysis with
substantially spaced piers.
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