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Composite PC girder with corrugated steel web is a promising alternative of new bridge construction
nowadays. A number of advantage over conventional flat straight web PC bridge are owing to its marked
separation of functions in resisting shearing force by corrugated web and bending force by upper and lower
flanges. However, considerable shear deformation in the web causes the deformed section of concrete flanges
and that of the web unparalleled. This results in errors when the Euler-Bernoulli beam theory is applied
for stress and deflection analysis of the girder. In this study, a more refined beam theory which accounts for
shear deformation is derived by the variational principle. Equilibrium equations and boundary conditions
for the theory based on three and two independent displacement functions are obtained. The general
solution of the differential equations are presented and applied to predict shearing force and deflection in
a number of girder comparing to results calculated by the finite element analysis. A good agreement on
the results is found and it is concluded that the theory is applicable to be used for predicting force and
deflection in the composite PC girder with corrugated steel web.

Key Words: Extended beam theory, Shear deformable beam, Variational principle, Corrugated steel web,

Finite element analysis.

1. Introduction

It is well known that folding a flat metal sheet to
a corrugated plate can increase flexural stiffness in a
direction parallel to its folded edges and it has been
used for many years in shipbuilding, for containers and
for long span roof beams ).

The increase in flexural stiffness and its other advan-
tages were also noticed from bridge construction side
and it was applied successfully in construction of the
first PC bridge utilizing the corrugated steel plate as
its web in France 2. The successfulness and its re-
markable advantages over conventional PC bridge has
aroused a number of research activity and construction
company to get involving in this new hybrid structure,
especially in Japan.

More than ten PC box girder bridges with corru-
gated steel web were constructed and under construc-
tion in Japan with a maximum clear span already ex-
ceeding 130 m®. An effort to put the PC bridge with
corrugated steel web into concrete practice in Japan
is evident on a publication of the design manual by
Research Group of Composite Structures with Corru-
gated Steel Web in 19989,

On the academic side, PC bridge with corrugated
steel web and its relevant subjects have attracted a

number of research activities worldwide. Lot of re-
search papers on the subjects are found originated from
U.S., Japan, European countries and Taiwan 3 6).

The most prominent advantages of the PC. box
girder bridge with corrugated steel web are® 7): 1) Re-
duction in the weight of web and therefore the weight
of the bridge. 2) Prestressing can be efficiently intro-
duced due to the so—called “accordion effect” of the
corrugated web ®). 3) No need for additional stiffen-
ers for web because of its high shear buckling strength.
4) Easiness for the long-term repair and maintenance.
Other advantages not argued here can be found in a
paper by Johnson and Cafolla®.

The corrugated steel web in a PC girder functions
mainly as a vertical shear—resisting member, while up-
per and lower concrete flanges resist for bending mo-
ment. A number of researches have been carried out
to investigate this characteristic and can be found, for
example in an experiment work of Yamaguchi et al. %)
and those of Elgaaly et al. 9 10).

Separation of the function of the girder in this way
may retard transfer of shear force to the corrugated
web, especially near a point of applied loading. This
phenomenon is called shear lag and is known to oc-
cur peculiarly in thin-walled structures. The retarding
of shear transfer is also found in partially interactive
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composite beam, however with different cause V).

The dominant shear deformation in the corrugated
web of the composite girder causes deformed section of
the flanges and that of the web unparalleled (see Fig-
ure 1). This phenomenon gives rise to an error in ap-
plying the Euler—Bernoulli beam theory to study stress
state and deformation of the girder.

To understand the phenomenon, a simple numerical
method based on a laminated beam theory was given
by Taniguchi and Yoda '¥. Nonlinear analysis and
comparison to experimental results were also included
in their work.

Shirozu et al. '3 attacked the problem by another
numerical method based on the so—called “Constant
shear flow panels”. The girder is divided into a number
of small section and the assumption on constant shear
flow is postulated on each panel. This method has an
advantage when the girder is of varied depth because
of its sectioning scheme.

Later on, an analytical treatment is provided in a
work of Kato et al.1%. The corrugated web is assumed
to be capable to carry only shearing force with neg-
ligible bending capacity. Two independent functions
are introduced in the formulation. The equilibrium
equations are derived based on force equilibrium on a
section. However, underestimation of shearing force in
the flanges is observed. _

In this study, a more precise beam theory based on
shear deformable Timoshenko beam hypothesis is pre-
sented. Three—function beam theory based on beam’s
vertical displacement, rotation of web and identical ro-
tation of upper and lower flanges is derived by the vari-
ational principle. The approach is justified because
the correct form of differential equations and bound-
ary conditions for assumed displacement field are not
known without using the virtual work principles!®). A
reduction to two—function beam theory is also carried
out. This theory is similar but not identical to that
derived by Kato et al. 19,

The derived differential equations are then solved
for homogeneous solution and a particular solution for
a case of uniformly distributed transverse load. Ap-
plication of the theories to predict shearing force and
deflection in a number of girders is carried out and
compared with those calculated by the finite element
method.

2. Theoretical development

Theoretical development is based on two-
dimensional treatment in plane of longitudinal
“direction along girder axis (z-axis) and in vertical
direction along depth of the beam (z-axis), see
Figure 1. Concrete and steel materials are assumed
isotropic and homogeneous and they are free from
initial strain and residual stress. All element on a line
perpendicular to z-z plane is assumed to have the
same stress and strain state (Plane stress condition).
Poisson’s ratios are assumed to be zero in all material.

Figure 1: Typical sectional deformation of PC girder
with corrugated web and assumed rotations

Figure 2: Shear deformation of corrugated web

However, it is used to calculate shear modulus of
elasticity. Normal stress in z-direction is negligible
because it is small compared with normal stresses in
z-direction *6). These are the common assumptions
in general derivation of an in—-plane behavior of beam
theory.

It is required further that, the connection between
concrete flanges and steel web is assumed perfect. All
stresses are within elastic region and there is no crack
in concrete flanges (it is actually restricted by pre-
stressing force which is not considered here) '

The corrugated web is considered to be a flat plate
with equivalent thickness, ty with reduced modulus of
elasticity, Ey. The transform equation for the equiv-
alent thickness can be derived by considering that
the corrugated web is continuously attached to “semi-
rigid” diaphragms, i.e., diaphragms that preserve the
shape of the end cross sections but offer no resistance
to the warping of these cross sections out of their pla-
nar condition) 1), Shearing force in the web can then
be expressed as shown below (Figure 2):

ad
lo’

F= GOA&: Go(hot) (%) = Goho (l7°t> 1)

Here, Gy is shear modulus of elasticity of the web
and ¢ is its actual thickness. The equivalent thickness
of the corrugated web can now be written as:

to = lTOt. (2)

The assumed displacements for the girder are as
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Figure 3: Cross sectional dimensions of the girder

shown below (see Figure 1):

u¥ (z, 2) = —2z afz),

uY (.CU, Z) =1 Oé(.’L‘) — (Z + ll) ¢1(.’13), (3)
u*(z,2) = —lz afz) — (z — l2) ¢a(x),
w¥(z) = w¥(z) = w*(z) = w(z).

Superscript W, U and L refer to web, upper flange
and lower flange, respectively. Geometric dimensions,
13, la, etc. are shown schematically in Figure 3. There
are four unknown functions in the above assumption
namely vertical deflection of the girder (w), rotation
of the upper flange (¢1), rotation of the lower flange
(¢2) and rotation of the web (a). The assumption is
generous, however, complexity arises with this assump-
tion in determining a location of the neutral axis.

The neutral axis of a given section is defined as a
point (or a line perpendicular to z-z plane) on the sec-
tion with no longitudinal strain and it can be found by
equilibrium of horizontal force on the section:

0=/UmdA.
A
ouu

_ll
0=bE/
141 et oz

la+t2 u
+ b, F. / dz. 4
. 252 Io 81: ()

Modulus of elasticity for upper flange and lower
flange are designated as F; and E,, respectively.

Substituting the assumed displacements (Equa-
tion 3) into Equation 4 and note that Iy = hg — Iy,
Ao = t()ho, A1 = bltl and Az = bztz, one can write an
expression for [; as:

ho (EoAo+2E2As) $2 —E1 Aty %‘d"* +E2A2t2 dd’z
(E0A0+E1A1 +E2A2 ’

L 5w

dz +toFo / B dz
—I T

L=

()
It is evident that the location of neutral axis depends
on three functions and this complicates later develop-
ment by its non-linearity. However, it is thought that
at a section far from a point of abrupt change in shear-
ing force, the neutral axis is nearly equal to that calcu-
lated simply by first-moment method. From this fact
and to allow further development, the location of neu-
tral axis is assumed constant along the girder and equal
to that calculated by first-moment equation.

2.1 Three—Function Beam Theory

In general, dimensions of cross section of upper and
lower flanges are in the same order (comparing to
the web), identical rotation in upper flange and lower
flange is then assumed, ¢» = ¢; = ¢. The assumed dis-
placement functions and their normal and shear strains
can be written as shown below:

uW = —zaq,
u¥ =l1a—(z+ll)¢, (6)
ut = —lha—(z~12)¢,
w¥ =w¥ =wt =w.
da dw
wo— 2% wo— D
Eaz *dz Yoz = Tqg T
de do dw
U =], = —r U = 7
Exx L dz (Z+l1) dz’ Yzz d @, ( )
do d¢> dw
€oo = ~lag—(a=le) ) V= o

All shear strains in Equation 7 are the same as de-
fined in the Timoshenko beam theory '®) 19, By the
fact that shear strain in the web (y,) is almost con-
stant along its vertical panel, there is no requirement
on a shear correction factor for this element. However,
for the upper and lower flanges, a shear correction fac-
tor of 5/6 is used to compensate for free surface stress
condition in Timoshenko beam theory.

In this study, the variational principle 2 is used to
formulate the equations of equilibrium and the bound-
ary condition of the system. The required energy func-
tions in the principle are derived and presented below.

The virtual strain energy of the beam along beam

-span (0 < z < L), can be written as:

L
sU =/ /(améegcalc + Tpo07z2) dAde
o Ja
=JdUW + U™ + §U*,

L l2
SU™ =t / / (o362, +
0 -l
L déa déw
— w_ " w M
/ { Mg @ (dw 5>}dx’
—13
SUY = b, / /
(l1+11)
déa
— Uu
/0 {N h—
+ Qv <£:} ~6¢> }da:,
latta
SU= = by / [ tondet o
0 lo
L déa
—_ L —_ —
_/0 { Nely dz (
MEBIN

(®)

WYY ) dzdx

(0¥, 0e¥, + T2,0vY,) dzdz

— (MY + N4} —— d5¢

dv%,) dzdzx

_ ety 398 d6¢

(9)

-31-



M

N
® 1
Q

7|
AN

N

Figure 4: Stress resultant (force) notations

The stress resultants in Equation 9 are defined as:

—'ll
(V¥ M, Qu) = / by(0%,, 0%, 74) dz,

—(l1+t1)

la-+t2
(=, M<, Q) = / ba(0%y, 2 0%, 75,) d,

l2

l2
0@ = [ tozon, s (o)
4

The stress resultants shown above can be interpreted
in the same way as in fundamental beam theory found
in elementary strength of materials. The notation is
shown in Figure 4 for clarity.

Here, another assumption is made on an identical
material properties of upper and lower concrete flanges,
i.e. modulus of elasticity, F; = E; and shear modulus
of elasticity, Go = G;. The stress-strain relations for
each element can then be written as shown below (k is
shear correction factor):

W w
g = E0€

') — W
T2 Tzz = GO’sz’

U u U — U
O5s = Eneg, Toz = kGl’sz’

L — L
Oz = Elszm’

(11)

With the above stress—strain relations, one can write
the stress resultants in terms of displacements as shown

Tar = kG175,

below: ‘
da t; d¢
u = — — —
N =Bk (ll a2 dac)’
do t2 d¢
L= _ —_— T
N BrAz (l2 dz 2 dzz:) ’
B B\ da
Wo— A2y
M = E°t°<3 3>dm’
t1\ da li t\ d¢
U — = — _ —_- e ] e
MY = -E A1l <l1+ 2) o E1 A1ty (2 + 3> Iz’
12\ da lo to\ d¢
L= _ Ly cx 2, 2y 29
M*¢ = —E; Asls (lz+ 2) T E Aoty (2 + 3> 1’
Q" = Godo (119 —a) ,
dz
Q" = kG14A; (ﬂ“‘ ) )
dz
Q° = kGhds (S (12)
dz

The virtual potential energy of external transverse
load, ¢ can be written as:

L
oV = —/ gdwdz. (13)
0

Finally, substituting Equation 9 and Equation 13
into the following virtual total potential energy func-
tion:

811 = 86U + 6V, (14)

and applying the principle of virtual displacements,
0IT = 0, one can obtained:

Equilibrium equations:

_dQv  dQu dQ=
=774z T Tdz dz ’ (15)
dMw dNu dN*< w
0=-— P + 1 i — 1y e +Qv, (16)
0= dMu N dM= 41 dNu _1 dN=
T dzx dz 1 dz _ LT
_ Qu _ QL, (17)
and Boundary conditions:
Natural Essential
QY+ Q" +Q*~, w, (18)
MY —[{N¥ 4+ [,N*, Q, (19)
MY+ M* +1;N* —[,N*, ¢. (20)

Using stress resultant—displacement relations (Equa-
tion 12), the equations of equilibrium can be expressed
in terms of the displacements as:

d®w  d¢ d?w  da
q=-81 (W—a> — 8o (W'-a;), (21)

dw d?a d2¢
0=go (E—a) +eod—m2+elm, (22)
dw d%a d%¢ '
0=g (g ~4) rergs e (2)
where:
go = GoAo,
g1 = kGl(A1 + Ag),
g, 8 2 2
eg = FEyty 3 + 3 +E (A1l1 + A2l2) ’

E

e = ?1 (A1til; + Astals),
E

e = _31 (A1t? + Aqst) .

Equilibrium equations (Equation 21-23) and bound-
ary conditions (Equation 18-20) constitute a system of
boundary value problem to be solved.

2.2 Solution of Three—Function Beam
Theory

By a well-established systematic method in solving
system of differential equations, the homogeneous so-
lution of the equilibrium equation (Equations 21-23)
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is found to be:

Wh, =00+C1£L‘+02£22‘ "1-03%?7|~C4e;m
b
+ 057, (24)
¢n = C1 + Caz + C3 (2 + 2m2) + Cubre™P®
— C56:1677, (25)
ap = C1 + Coz + Cs (22 + 2n3) — Cybpe 5=
+ Cs02eP°. (26)

And a particular solution for a case of uniformly dis-
tributed transverse load, ¢ along the beam are:

q.’IJ

= 27
wp ’rll 24 ( )
qn2 q z®
=—z+ —— 28
qn3 q 3
Qp = —T+ —— 29
p= e (29)
where:
2 _ n
(eoe2 — e3)ng’
0, = 807374 8y = 811274
N2 — N3’ 2 — 13’
e +e
m=ep+2e +es 1= ——02,
g1
n3=eo+el 774=g0+g1
g 8081 '

Note here that a term (eges — €?) in constant 3 is
positive—definite.

Six unknown constants in the homogeneous solution
can be found by considering appropriate boundary con-
ditions at both ends of the beam.

2.3 Two—Function Beam Theory

A three displacement functions based beam model
is formulated in section 2.1, and its solution is given
in section 2.2. In this section, a beam theory based
on two displacement functions deduced from the three
displacement functions is presented.

The reduction is made by assuming that the up-
per and lower flanges can be simply expressed by the
FEuler-Bernoulli beam theory, while the web still sat-
isfies the Timoshenko beam assumption. The dis-
placement functions for this two—function beam the-
ory can be deduced from Equation 6 by substituting
¢ = dw/ dz, and are shown below:

a4V = —24,
du
Yt =lL&— (2 + l]_)ﬁ,
e R dw (30)
U = —ld— (z — lg)q;,

Small hat over each character designates a quantity
belonging to this two—function beam theory.

Stress resultant-displacement relations can be ob-
tained by directly substituting ¢ = d@/dz into Equa-
tions 12 and are shown here:

N = B4, (zlg&%%) :
et (142122
MY = —Eqt, (l;-i—g) —d-g,
= ~E1 A1l ( —>—~—E1A1t1 (2"‘2)%3;—15’
= —E14oly ( —) 2By Asty (12 +t—2) %f—
Q¥ = Golo (%—Q) (31) ,

Shearing force resisted by upper and lower flanges
can not be calculated by stress-strain relations be-
cause the Euler-Bernoulli beam’s assumption provides
no transverse shear strain. The shearing force, how-
ever, can be deduced from Equation 17 (this is an
equilibrium consideration, thus, it should be called re-
action®)):

R U Tu
Q= 4 U
=-E1 At <l21 (31 ozz + %{i—?) )
N T V&
= —E3Asty (l22(3024+_t33%1_1§;> (32)

It is noted here that the same form of shearing force
Qu and QL can be obtained based on the variational
principle if one works on displacement functions in
Equation 30 directly.

In a similar study by Kato et al. %), only the last
term involving deflection of the girder (w) seems to be
considered.

The first equilibrium equations is deduced by substi-
tuting Equation 17 into Equation 15. The second equi-
librium equation is in the same form as Equation 16:

d2 M : d2Nu  @2p= . d2Ns
== dzz ' dz2 T dz2? +iz dz?
dQ=
__dMvw  dNw  dNe L
0=— az +1; P lo dz +Qv, (34)
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with boundary conditions:

Natural Essential
Qv +Q* +Q~, W, (35)
MY —EN% + [;N*®, &, (36)
AR TCEUN (N T (37)

Substituting stress resultant—displacement relations
(Equation 31 and 32) into Equation 33 and 34 yields
the equilibrium equations in terms of the displacements

. d*d ie d$Ba ., (d%w _ dé (38)

1= 2 g1 13z 8\ a2 "z )
. dw . o d2a . A3
0=2g0o (-dz— ) +téo gz e g (39)
where

go = GoAo,

A BB 2 2

ey = Egty g + 5‘ + E; (A1l1 + A2l2) ,

" FE

& = _51_ (A1tily + Astaly),
. E

€y = ?1 (Alt% + Azt%) .

2.4 Solution of Two—Function Beam
Theory .
Similar to section 2.2, one can obtain the homo
geneous solution of the equilibrium equations (Equa-
tion 38, 39) as shown below:

R N L g2 . 23 R e—ﬂ“z
thC’o+C1IE+02? +03?+C47

6 (40)
+ C5—,
B
6 =C1 +Coz +Cs (:1:2 + 2772) + CybieP=
— Cybrefe. (41)

“and a particular solution for a case of uniformly dis-
tributed transverse load, ¢ along the beam as:

a=12, (42)
&y = %x + %%3 (43)
“where:
R T A .
(€062 — &%)’ & +é&;’
=G0+ 281 48, fp= DAL,

go
This completes the derivation of three—function and
two—function beam theory.

Load case 1, 4 Points Loading
P P
t {

Load case 2, Uniformly distributed load g

AB (o] b E FG
| o i unit : m
; 6.30 o 5.40 6.30 J'
! 18.00 B

Figure 5: Representative girder
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Figure 6: I and T section

It is noted here that it is possible to derive a four—
function beam theory by working on assumed displace-
ment functions in Equation 3 directly. But it is found
that its equilibrium equations are complex and leads
to a solution involving 8 different exponential functions
(comparing to 2, in Equation 24 and 40). So in this
study, up to three—function beam model is derived and
studied. .

For upper and lower flanges in three—function beam
theory, a more refined beam theory which does not
require a shear correction factor can be used instead
of Timoshenko beam theory %) 21, The refined the-
ory is a third-order one which completely satisfies free
surface stress condition requirement. And it also re-
quires higher-order stress resultant—displacement rela-
tion. This seems to complicate the development and
hinders an interpretation of the equilibrium equations
and boundary conditions.

3. Application to Corrugated Steel
Web Girder

In this section, the developed theories are applied to
solve for shearing force in web of a number of girder.
The problem is also solved by the finite element anal-
ysis. ’

3.1 I-, T- and Box Girder

Figure 5 shows a simply supported PC girder with
corrugated steel web to be analyzed in this section.
Three typical sections as shown in Figure 6 and Fig-
ure 7 for I-, T- and Box girders are selected as repre-
sentatives of commonly used girders.
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Figure 9: Symmetric half of a simply supported girder

Upper and lower flanges in the girder are as-
sumed poured with concrete of ultimate strength
4.0 x 10" N/m? and modulus of elasticity of 3.10 x
10' N/m?, corrugated steel web is SM490Y with mod-
ulus of elasticity of 2.0 x 10! N/m?. Calculated shear
modulus of elasticity of the concrete and the web are
1.292 x 10'° N/m? and 7.692 x 10' N/m?, respectively
(see Equation 57). The corrugated web is made of a
9 mm-thick steel sheet folded into a trapezoidal shape
with a dimension as shown in Figure 8. The web is
also provided with upper and lower steel flanges and 7
vertical steel stiffeners of the same thickness at loca-
tion A—-G as shown in Figure 5. They are all with 25
cm width.

Symmetry of the girder with respect to its midspan
is benefited by requiring only half of a girder to be
analyzed. The symmetric half is shown in Figure 9
with detailed dimensions.

The girders are assumed to be loaded by two differ-
‘ent load cases as shown in Figure 5. Load case 1 is
concentrated 4 points loading, and load case 2 is uni-
formly distributed load along its clear span.

Effective prestressing force is assumed to cause ap-
proximately zero stress and 40% of concrete’s ultimate
strength stress in upper and lower flanges, respectively.
Magnitudes of the load in each case are then calculated
to approximately neutralize lower flange’s stress. Sum-

Table 1: Prestressing force and load case

Force -elements I SectTl‘on Box
Prestress force [MN]

1) Upper flange 0.315 | 0.72 { 0.90
2) Lower flange 4.50 | 4.50 | 7.65
Load case 1, P [MN] 1.00 | 1.05 | 1.70
Load case 2, g [MN/m] | 0.16 | 0.16 | 0.27

mary of force parameters is shown in Table 1

3.2 Theoretical Analysis

Analytical solution can be obtained in an exact man-
ner as when one dues with a deflection problem of
loaded beam. The general solution and particular so-
lution given in Section 2.2 and Section 2.4 for three—
function (Equation 24-26 and 27-29) and two—function
beam theory (Equation 40-41 and 42-43) are already
at hand and adequate to solve the problem with both
loading cases. The remaining is to evaluate constants
of integration from appropriate boundary conditions
for each span and each loading case. There is no dif-
ference in I-, T- and Box-girder in considering the
boundary conditions.

For loading case 1 (4—point load), the symmetric left
half of the girder is divided into 3 segments composed
of segment A-B, B-C and C-D (refer to Figure 9).
The appropriate boundary condition for each point is
discussed below (refer to Equation 18-20 and Equa-
tion 35-37). The treatment is done for three—function
beam theory only because the corresponding boundary
conditions for the two-function theory can be deduced
directly by substitution, ¢ = dw/ dz.

1. Point A, free end with and without prestressing
force, it requires that:

a=a¢,
Qw+Qu+QL= ’

(44)
(45)

to satisfy plane remains plane condition. Bending
moment arises from prestressing force is balanced
by setting:

MY 4 MY + M* = M,, (46)

where M, stands for prestressing moment (which
is generally negative) and it is zero in a case of
no prestressing. Prestressing compressive force is
treated separately by the superposition principle.

2. Point B, interior support, it requires that:

w=1H=0, (47)
- o+
¢ =4, (48)
a=a, (49)
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MY — [;N¥ 4 [;N=

+  ++ o+ +
= MY —[N¥ +,N*,  (50)
MY + M~ + [ N* — [,N*®
+ + o+ + o+ +
= M* + M% + [,N* —[,bN=, (51)

where — and + signs designated quantities of left
and right span, respectively.

3. Point C, interior connection with applied external
foree, this condition is similar to the case of inte-
rior support, i.e. Equation 48, 49, 50 and 51 are
valid. Additional requirements are:

+

w = w, (52)
= - - + + +
Q¥ +Q*+Q%) - (@Y +Q"“+Q%) =P,
(53)

here, P is an applied external force.

4. Point D, symmetric midspan, no rotation is al-
lowed:

a=0, » | (54)

and it requires vanishing of shearing force:

QY +Q¥+Q* =0. (56)

For loading case 2 (uniformly distributed load), the
girder is divided into 2 segments, A-B and B-D and
the boundary conditions are that of case 1, case 2 and
case 4 above.

Other quantities for the solution of the differential

equations are materials properties which are of very
important. Shear modulus of elasticity of concrete, G
is postulated to be derivable by a relation:

E

G= 2(1+v)’

(57)
with the Poisson’s ratio of 0.2.

Shear modulus of elasticity of corrugated steel web,
Gy is derived by the same relation (v = 0.3). A reduced
modulus of elasticity of the web, Ey however, is set as
zero in this study. A reader who is interested in equiv-
alent orthotropic properties of corrugated sheet is re-
ferred to a work of Briassoulis?? for a wealth informa-
tion on the topic of a curved corrugated sheet. For re-
duced modulus of elasticity in extension for trapezoidal
corrugated sheet, one may find a work of Tapankeaw et
0l.2%) and that of Johnson and Cafolla 2?9 helpful.

3.3 Classical Theories _

For comparison purpose, calculation results based
on the classical Euler-Bernoulli beam theory and the
classical Timoshenko beam theory are also examined.

Figure 10: Magnified deformed I-girder under load
case 1 (Flanges are in inverted color)

Shear deformation is not considered in the Euler—
Bernoulli theory but the Timoshenko theory does. In
this calculation, shearing force in the Timoshenko the-
ory is assumed to be resisted entirely by the web (with
shear correction factor 1.0) while bending force to be
resisted by upper and lower flanges. :

3.4 Finite Element Analysis

A numerical calculation by the finite element analy-
sis is also carried out in this study. The girder is mod-
elled and analyzed in a generous finite element analysis
program, ABAQUS. Concrete flanges are discretized
into matrices of three-dimensional 8-node linear brick
element, C4D8. Corrugated steel web, steel flanges
and stiffeners are assembled from 4-node linear shell
element, S4 (An example of the finite element model
is shown in Figure 10).

A condition of plane remains plane at the end of the
girder is achieved by utilizing rigid element. Load is
directly placed on a small area (or small band) on the
upper flange over corrugated web and linear analysis
is carried out in this study.

3.5 Analysis Discussions

Figure 10 shows a magnified deformation of I-girder
under load case 1. Unparalleled deformed section of
concrete flanges and corrugated web can be noticed in
the figure and this confirms the assumption on different
rotation of the elements.

Shearing forces in corrugated web calculated by the
finite element analysis and those predicted by devel-
oped beam theories are shown in Figure 11 to Fig-
ure 14. The cases of T— and Box girder for load case 2
are omitted here to save space. A very good agreement
on the calculated shearing force is found in all figures.
Both three- and two-function beam theory yield pre-
dicted shear forces almost the same and they are very
close to those calculated by the finite element analysis.

Vertical deformations of the girder are shown in Fig-
ure 15 to Figure 17, for I-, T- and Box girder under
load case 1. The results from finite element analysis
refer to a line connecting centroid of the lower flanges
and those marked with ‘FEA w/o shear lag’ are ob-
tained from the model with additional lateral restraint
on the upper and lower flanges not to allow for shear
lag in them.
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Figure 11: Shearing force in web of I-girder under load

2000
wo{ [T T TTTTTTTT
z ' J
- 1200 !
< J
) |
8
<800 -
a0
é 2-Function
R 400 { f | ererereeeeene 3-Function
_g | o Euler-Bernoulli
w0 Total shear
0 4.l
AB o] D
w00 . |
0 1 2 3 4 5 6 7 8 9

x distance from left support, m

Figure 14: Shearing force in web of Box girder under
load case 1

-0.002

case 1
1600
1400 4 ™~ ~ . FEA
1200 ! ~ ~ 2-Function
E Joo S 3-Function
~ 1000 4 | “oo, ~ ° Euler-Bernoulli
8 Total shear
—
S
2
g
<
w0

6 1 2 3 4 5 6 7 8
x distance from left support, m

Figure 12: Shearing force in web of I-girder under load
case 2
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Figure 13: Shearing force in web of T-girder under
load case 1

From the figures, it is found that the vertical defor-
"mation of the girders predicted by the developed theory
are almost the same as those calculated by the finite
element analysis. Especially, they are in very good
agreement with results by the finite element analysis
for no shear lag case, as the phenomenon is not consid-
ered in this study. On the other hand, the results based
on the Euler-Bernoulli beam theory and Timoshenko
beam theory evidently give erroneous predictions.

Figure 16: Vertical displacement of T~girder under
load case 1

4. Conclusions

The extended elastic shear deformable beam theory
is developed in this study. The equations of equilib-
rium and their associated boundary conditions are de-
rived by the principle of virtual displacement. Theory
based on three and two displacement functions are ob-
tained and they are verified with a calculation compar-

ing with the finite element analysis. A good agreement
on the shearing force distribution in corrugated web is
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Figure 17: Vertical displacement of Box girder under
load case 1

found.

In conclusion, the developed theory is accurate
enough to be applied for prediction of force and de-
flection in PC girder with corrugated steel web.
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