Journal of Structural Engineering Vol.48 A(March 2002)

JSCE

A localized identification strategy with neural networks and its application to structural
health monitoring

Bin XU*, Zhishen WU** Koichi YOKOYAMA***

*Dr. of Eng., Postdoctoral Fellow of JSPS, Dept. of Urban & Civil Eng,, Ibaraki University, Nakanarusawa 4-12-1,
Hitachi, Ibaraki 316-8511, Japan
**Dr. of Eng., Assoc. Prof., Dept. of Urban & Civil Eng,, Ibaraki University, Nakanarusawa 4-12-1, Hitachi, Ibaraki
316-8511, Japan
***Dr. of Eng., Prof,, Dept. of Urban & Civil Eng., Ibaraki University, Nakanarusawa 4-12-1, Hitachi, Ibaraki
316-8511, Japan

A localized inverse analysis method with neural networks for health monitoring and parametric identification by
the direct use of dynamic responses is proposed for a substructure of a multi-story frame. First a localized
emulator neural network is presented for the purpose of identification of the healthy substructure. Dynamic
responses of the healthy substructure induced by ground excitation are used to train the localized emulator neural
network. The emulator neural network can be used to decide the difference between a damaged substructure and
the healthy substructure. An evaluation index of relative root mean square (RRMS) error vector is presented to
evaluate the condition of the damaged substructure. And then, a localized parametric evaluation neural network is
trained to forecast the stiffness of a damaged substructure. It is shown that the localized parametric identification
strategy has the potent1a1 of being a practical tool for the health monitoring of civil engineering structures. The
proposed strategy is robust for different kinds of ground motion.
Key Words: neural networks, inverse analysis, identification, damage detection, localized

1. Introduction

Structural identification and health monitoring for
infrastructure is a challenging problem that is under
vigorous investigation by numerous researchers using a
variety of analytical and experimental techniques.
Non-destructive evaluation (NDE) methods for the
detection of damage in structural systems have been
receiving increasing attention in the recent past.

Most structural damage assessments are carried out
through visual inspections. Non-destructive damage
identification on the basis of observed dynamical signals
have been the focus of research studies for many years. A
number of localized approaches based on the use of
specialized equipment have been proposed to provide
detailed information about the specific elements or parts of a
structure. These include radiographic, electromagnetic,
acoustic emission, X-ray, magnetic, and ultrasonic methods.
In general, health monitoring involves the comparison of the
changes in structural properties or response, and it can be
viewed as a classification problem. The analytical techniques
for health monitoring use mathematical models to describe
structural behavior and establish mathematical models to
approximate the relationship between the specific damage
condition and changes in the structural responses. The

mathematical-model-based structural identification methods
can be categorized into time-domain and frequency-domain
approaches'™. Effective classification or interpretation of the
changes in structural responses or dynamic properties due to
damage is a critical task. Frequency-domain analysis is
concemed with spectral estimates and the frequency
characteristic of responses. Deterioration and damage results
in a reduction of structural parameters for example, the
stiffness of structural members. This reduction produces
changes in the dynamic properties, such as the natural
frequencies and mode shapes. And time-domain analysis
involves recursive fechniques, maximum likelihood estimates
and so on. As described by Zhao et al.”, although the

- methods that have been developed are applicable in concept

to most structural models, it is not practical to directly apply
them to a structural model with a large number of degrees of
freedom(DOF) because excessive computation time and
computer memory are necessary for convergence, and also it

" may not be theoretically possible to obtain unique estimates

of all parameters. Due to these reasons, a localized
identification method for multi-degree-of-freedom (MDOF)
structures in the frequency domain was proposed by Zhao et
al.® and a localized vibration control strategy was presented
by Xu et al. *”. And as another kind of method for
large-scale structure system, the concept of decentralization
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for identification and control method was studied by Sandell
etal.®, Magafia et al.” and Xu et al.'®. Wu etal.'® proposed a
decentralized identification strategy for damage detection of a
MDOF structure by the use of decentralized parametric
evaluation neural network, the stiffness of each substructure
can be forecast with high precise. In this study, a substructure
of a MDOF structure is taken as an objective, and a localized
health monitoring and damage detection strategy is presented.

On the other hand, the ability of artificial neural
networks to approximate arbitrary continuous function
provides an efficient mechanism for the identification and
control problem. Neural networks are suitable for pattern
classification and natural information processing tasks.
Neural networks are finding application in almost all
branches of science and engineering. Modeling dynamic
systems by using neural networks has been increasingly
recognized as one of the system identification paradigms.
The neural network based modeling problem of an

unknown linear or non-linear discrete time multivariable

dynamic system is to develop a neural network model that
is capable of learning and predicting the functional
mapping between the inputs and the outputs of the dynamic
system. The knowledge acquired by a neural network is
stored in its comnection- weights, which are adaptive and
can change mn response to outside stimuli. At present,
several neural networks with different structures have been
proposed to solve identification and control problems. The
most widely used neural networks for identification and
control problem are the multi-layer neural networks.
Numerous engineering applications of neural networks
have been reported in the literature of recent years. A great
number applications of neural networks for identification
and control in civil engineering were reviewed by Xu et
al.6’7’w’“’14), Wu et al.“), Ghaboussi et al.lz), Chen et al.m,
Nakamura et al.'”, Zhao et al'® and Yoshimura et al. m
Some researchers have also used neural networks in the
identification of the damage in structures.

In this paper, aiming at a substructure of a MDOF
structure, a localized health monitoring and parametric
identification method with neural networks by the direct
use of dynamics responses under earthquake excitations is
proposed. The dynamic responses of structures under
environmental excitations or small-scale earthquakes are
useful and economical information for health monitoring,
some information about structural parameters and dynamic
properties is stored in it. To identify the substructure by
neural networks, the decision and select of variables for
input and output is critical, those variable should have clear
physical meaning and enough to carry out identification.
And for the purpose of practical application, an evaluation
index should to be defined and selected properly. The
evaluation index must be related with the variation of the
structural parameters and be independent to the excitations.
The root mean square (RRMS) error has been widely used
for evaluation of performance of neural network for
identification problem. But it is not suitable evaluation for
health monitoring. In this paper, a relative root mean

square (RRMS) error vector is introduced as an evaluation
index in this study. The reasonableness of this evaluate
index is demonstrated by numerical simulation. Results of
numerical simulation show that the localized health
monitoring strategy with the localized emulator neural
network can clearly identify the damage existing with high
sensitivity. Moreover, a localized parametric evaluation
neural network is constructed and trained to forecast the
structural parameter of stiffness based on the RRMS error
vector. The robustness of the localized parametric
evaluation neural networks is demonstrated. This strategy
cannot ascertain which specific component has damaged
because the forecast structural parameters are the
inter-story stiffness, which consists of a cluster of
structural members. But this strategy is suitable for the
structural systems where damage results in the changes n
stiffness.

2. Localized Parametric Identification with
Neural Networks Using Dynamic Response

A localized neural network based health monitoring
and parametric identification strategy for an illustrative
frame structure by the use of structural dynamic responses
under small-scale earthquake is proposed.

Usually, a frame structure can be discretized as a
MDOF model. It may be further divided into several
substructures, which consist of a small number of DOF and
are connected with each other through interfaces or
boundaries. The substructure in a MDOF frame structure is
interconnected with all the remaining upper structures and
lower substructures through upper boundary and lower
boundary respectively. Zhao et al. * testified that the lower
boundary can be selected as a reference point and
considered as the nominal ground for the substructure.
From the vector-matrix equation of motion for a
substructure, it is clear that the dynamic response of the
substructure can be determined independently from the
absolute acceleration of the lower boundary and original
conditions of the substructure by numerical simulation step
by step.

The full procedure on localized health monitoring and
parametric identification with neural networks by the use
of dynamic responses shown in Figure 1 can be divided
into four steps. Two typical three-layer neural networks
trained by back-propagation method are designed for the
purpose of health monitoring and parametric evaluation.

In step 1, a localized emulator neural network is
constructed and trained to identify the substructure using
the dynamic responses of the objective substructure in
healthy condition, which can be considered a newly
supplied or existing structure. After the localized emulator
neural network is trained successfully, the dynamic
characteristics of the substructure in healthy condition or
current state at the beginning of healthy monitoring can be
identified. In other words, the localized emulator neural
network is a non-parametric model for the substructure and
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Figure 1. Localized structural health monitoring and
parametric evaluation based on neural network with dynamic
responses

can be used to forecast the dynamic responses of the
structure under earthquake excitations.

In step 2, if the structural parameters of the
substructure have changed, the real dynamic responses of
the substructure will not correspond any more to the output
(dynamic responses) forecast by trained localized emulator
neural network. The error between the dynamic responses
forecast by the localized emulator neural network and it
observed from the substructure provide a quantitative
measure of the changes of parameters in physical
substructure relative to its healthy condition. The proper
selection and definition of an evaluation index is a critical
work. A suitable evaluation index for health monitoring
when dynamic responses under earthquake excitations are
used should have the following properties: it should have
direct relation with the variation of structural parameters
and have relative independence on the earthquake
excitations. Even through the Root Mean Square (RMS)
error is a widely used index for the evaluation of
identification performance of neural networks, as testified

“in this paper, RMS is depend on the earthquake excitations,

it can not be used for health monitoring. So, in this paper,

‘an evaluation index of Relative Root Mean Square(RRMS)

error is defined. The performance of the RRMS error is
checked by numerical simulations, it is shown that the
RRMS error is a suitable index and can be used to show
whether damages exist or- not in the substructure. In
practical application, a threshold level can be set, once the
evaluation index exceeds the threshold level, an alarm
stgnal can be made for the users of the structure.

In step 3, in order to evaluate damage (the decrease in
structural stiffness) in quantity, a localized parametric
evaluation neural network 1is constructed and trained..
Training data sets consisting of structural parameters of
substructures with different degree of damages and the
corresponding RRMS error vector are used to train the
localized parametric evaluation neural network. The
localized parametric evaluation neural network identifies
the relationship between the RRMS error and structural
parameters.

In step 4, by the method described in step 2, the
RRMS error can be determined, and then structural
parameters can be forecast by inputting RRMS error to the
localized parametric evaluation neural network tramned in
step 3.

3. Equation of Motion of Structure Under
Earthquake

Without loss of the generality, the performance of the
proposed localized identification and parametric evaluation
is studied by numerical simulation for a frame structure
that is modeled as a mass-spring-dashpot system with »
degrees of freedom.

The motion of the structure with # degrees of freedom
can be characterized by the following differential equation,
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Figure 3. A substructure in an eight stories frame structure

[pfe kxR =Mz,
where [M ], [C] and [K ] = the mass, damping, and
stiffness matrices of the structure, {x} , {x} and {x} =

the acceleration, velocity, and displacement vectors, and
X, = the earthquake base acceleration. The equation of the

structure is numercally integrated by Newmark- g

method to obtain the solution of structural dynamic
response under earthquake excitations. The integration
time step used in the numerical analysis is chosen to be a
small fraction (one-twentieth) of the sampling period.

Consider the objective substructure shown in Figure 2,
which includes mass p+/ to mass ¢ and interconnected
with the upper boundary mass g+I and lower boundary
mass p. The lower boundary mass p is selected as a
reference point and considered as the nominal ground for
the substructure.

The vector-matrix equation for the substructure under
earthquake excitations can be written as

M+l e+ =0 @

where

m, 0 0 0 0
0 0 0 0
M]J=| 0 0 m 0 0 (3a)
0 0 0O 0
] 0 0 0 O m, |
ktk, -k, 0 0 0
ky kyth, <k, 0 0
[Kl=f o - 0
0 0k, kothk, —k,
i 0 0k, k,+k]
(3b)
vxp+1
=9} (3¢)
L x‘] J
( _mp+1xp
-m i
fi @) =1 7 (3d)

- mq‘xp + Cq+lxq+l + kq+l‘xq+1

[CS] is the same form as [K S] except using C,

for k,, and Xx,, r=(p+1---,q) is the relative
displacement of each mass with respect to lower boundary
of mass pand X » 18 the absolute acceleration of mass p.

m,,c,.k, damping and stiffness

coefficient formass 7, r=(p+1,---,9).

From the motion equation (2) of the substructure, it is
clear that the substructure can be considered as an
independent part and the dynamic response of the
substructure can be determined by the time series of
dynamic response of the lower and upper boundaries step
by step completely. The dynamic responses of the
substructure at time step K+1 can be determined according
to the dynamic responses of the substructure and boundary
acceleration at time step K. This 1s the theoretical basement

represent mass,
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for establishing the architecture of the emulator neural
networks for localized identification.

In this study, an eight stories frame structure with
known parameters shown in Figure 3 1s assumed for the
llustrative model in healthy condition and discretized as a
8 DOF of mass-spring-dashpot model. The model
parameters are assumed known as the following, mass

m, =185kg , stiffness k, =50*10°N/m and

damping coefficient ¢, =2.0¥10°N.s/m for each

mass (i=1,-'-,8). The first four natural frequencies of the
frame structure are 1.53 Hz, 4.53 Hz, 7.38 Hz and 9.97 Hz.

It is widely reported that some buildings were
destroyed in the middle stories in the Hyogo-ken Nanbu
Earthquake (17 January, 1995). The middle part is usually
a critical part for a shear building under earthquake

excitations. So in this study, the middle part of the structure,

which includes mass 4 to mass 5 and interconnected with
the upper boundary mass 6 and lower boundary mass 3, is
considered as objective substructure:

4, Simulation on Localized Identification
Using Dynamic Responses with Emulator
Neural Network

4.1 Localized Emulator Neural Network for

Substructure

System identification for damage detection and health

monitoring 1s to model a structural system mathematically
and to adjust the parameters of the analytical model to
minimize the difference between the analytically predicted
and empirically measured response. System identification
‘is an inverse problem, which requires comprehensive
search process. On the other hand, the inverse problem can
be solved by using the neural network approach without
any comprehensive search methods, such as extended
Kalman filter, recursive least squares, and modal
perturbation.

A three-layer neural network called as localized
emulator neural network is constructed and trained to identify
the dynamics of the substructure 1n a nonparametric manner.
For the purpose of health monitoring, accelerometers are
considered to place at each story of the substructure. The
measured accelenation data can be converted into velocity
and displacement by integration with respect to time. And
then the relative displacement and velocity of the masses of
the substructure with respect to the lower boundary can be
determined.

Even through it is important to choose a proper network
size for identification, to determine the best network size for
a given System is not straightforward. Usually, the size of a
neural network can be decided through a trial-and-error proc
ess. The input and output variables should be selected
logically with the consideration of physical meaning. As des-

Relative
displacement
response

Relative
velocity
response

Relative
displacement
response

Absolute
acceleration of
Lower
Boundary

Figure 4. Localized emulator neural network

cribed above, according to the equation of motion of
substructure, the dynamic response of the substructure can be
determined by numerical integration step by step. The
dynamic responses of the substructure at time step K+1 can
be determined according to the dynamic responses of the
substructure and boundary acceleration at time step K. A loc
alized emulator neural network is constructed to identify the
dynamic charactenistic of the substructure in the form of
forecasting the dynamic response at time step K+1 from the
dynamic responses and boundary conditions at the time step
K

The architecture of the localized emulator neural
network 1s shown in Figure 4. The mnput layer includes
relative displacements, velocities response of mass No. 4 to
mass No.6, and the absolute acceleration of the lower
boundary (mass No.3) at time step K. The number of
neurons in hidden layer is set to be two times of it in input
layer. The neuron in output layer represents the forecast
displacements of mass No. 4 to mass No.5 at the next time
step K+1. So the input, hidden and output layer includes 7,
14 and 2 neurons, respectively.

The training process for the localized emulator neural
network 1s to establish the appropriate connection weights
between neurons of each layer by a form of supervised
learning with the help of training data sets, which are
composed of a number of patterns of mputs and desired
outputs of the substructure. The training data sets are
constructed from the time series of dynamic responses by
numerical integration analysis results.

Based on the error back-propagation algorithm, the
localized emulator neural network 1s off-line trained first.
The error function ‘is calculated from the difference
between the outputs of the localized emulator neural
network and the displacements of each story of the
substructure. At the beginning of training the localized
emulator neural network, the weights are initialized with
small random values. The localized emulator neural
network can be trained to achieve a desired accuracy for
modeling the dynamic behavior of the substructure.
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In this paper, three earthquake excitations (load cases)
are studied. And the three earthquake excitations are scaled
with velocity amplitude of 0.30m/s.

(1) Case 1: 8 seconds of Taft earthquake (July 21,1952,
Kern County);

(2) Case 2: 8 seconds of El Centro earthquake (May
18,1940, Impenial Valley);

(3) Case 3: 8 seconds of Kobe earthquake (January 17,
1995, Hyogo-ken).

The training data sets for the purpose of training
localized emulator neural network are constructed from the
numerical integration analysis results in load case 1. The
numerical integration analysis is carried out with
integration time step of 0.002 second. Earthquake
excitations are linearly interpolated with time step of 0.002
second for numerical integration. The training data sets are
performed with the data taken at the intervals of the
sampling period of 0.04 second. The training data sets,
used for training the neural networks are the 200 patterns
of input and output data taken from 8 seconds of dynamic
response records of the substructure. Generally, the
multiplayer neural network requires the normalization of
the input and output data, because it is difficult to train the
neural network without the normalization. In this study, a
linear normalization pre-conditioning for the training data
sets is carried out'”.

The whole off-line training process takes 10000
cycles. By means of the error back-propagation learning
rule, the training data sets performed above are used to
train the localized neural network in order to model the
structural dynamics of the substructure. Figure 5 gives the
result of comparison between the displacements
determined from the numerical integration analysis (called
as observed responses) and those forecast by the trained
localized emulator neural network of mass No. 4, 5,
respectively, in load case 1. It can be seen that localized
identification can be carried out with high accuracy.

4.2 Discussion on Adaptability of Emulator
Neural Networks

In order to carry out health monitoring by the use of
dynamic responses under earthquake excitation, it is
necessary to discuss the adaptability of the localized
emulator neural network trained above for other kinds of
earthquake excitations, because a structure is seldom
excited by two same earthquake. As other examples, we
investigate the performance of the trained emulator neural
network when the structure is subjected to different kinds
of earthquakes. Usually, the root mean square (RMS) error
is a widely used evaluation index to evaluate the
performance of neural networks for identification. The
RMS error of forecast displacements in each load case is
demonstrated in Table 1. The RMS errors can reach a very
little value. It is shown that localized identification can be
carried out precisely by proposed method. This indicates
that the trained localized emulator neural network has been
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Figure 6. Compression of displacements in case 2

able to forecast the displacements of the substructure well
under different seismic excitations with higher accuracy.
And the decision and select of variables for input and
output of the localized emulator neural network is suitable
and enough to carry out identification for the
corresponding substructure.
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TABLE1 RMS ERROR
RMS Error (*10° m)
Mass No. 4 Mass No. 5
Case 1 4 7
Case 2 R 12
Case 3 3 5

4.3 Health Monitoring with Emulator Neural
Networks

As described above, the deviation between the output
from a damaged substructure and the output from the
trained localized emulator neural network provides a
quantitative measure of the changes in stiffness in the
physical system relative to the healthy condition.

In order to make this methodology practical, it is
necessary to choose an evaluation index, which is
independent on the earthquake excitations, because it is
scarce for a structure to be excited by two same
earthquakes during the life cycle. For the purpose of health
monitoring, an evaluation index that is independent on the
characteristics of excitations should to be defined. As
shown in Table 1, the RMS error of displacement response
of each mass is dependent on the earthquake excitations.
So the RMS error is not a suitable index for evaluating the
degree of structural damage of structure, because it
- changes with the excitations.

Because of the difference of response spectrum of
different earthquake excitations, the amplitudes of dynamic

responses are different. The RMS error is a kind of
absolute error, it should be related to the amplitude of
responses, an error which is defined in relative form maybe
independent on the earthquake excitations and suitable for
health monitoring. In this paper, a relative root mean
square (RRMS) error vector is defined as an evaluation
index for health monitoring. The RRMS error vector {e}
can be defined as follow,

e={, ... e} ()

\/ ] :M:( mi ml)

,- s , i=1---n) ()
m—l

where M = the number of sampling data, a,, = the

output of localized emulator neural network corresponding
to the DOF of i at sampling step m , b_ = the

mi
displacement comresponding to the DOF of I decided
through the dynamic responses analysis under earthquake
excitations at sampling step 7. And » is the number of
the neurons in the output layer of the localized emulator
neural network.

Here, some results about RRMS error vector are
described. Let the stiffness of the substructure decrease to
90%, 80%, 70%, 60% of the original values respectively,
the components of RRMS error vector corresponding to the
relative displacement of mass 4 and 5 in the three cases are
shown in Figure 8.

From Figure 8, it is clearly that the RRMS error in
different cases does not change greatly. The results of
RRMS error in Case 1 and Case 2 are very close, even
through there are some difference between the results in
Case 3 and its in Case 1 and Case 2. And the relationship
between the RRMS error and the degree of damage in
stiffness of each substructure exists. The RRMS error is a
suitable and useful index for health monitoring. In a
practical application, a threshold level may be set, if the
RRMS error exceeds the threshold level, the method can
directly notify the residents of the building that damage
occurs. This automatic notification capability is quite
useful for real-time health monitoring.

Figure 9 gives the relationship between the modulus
of the RRMS error vector and the degree of stiffness
decrease. It is shown that the RRMS error increases with
the degree of damage. And it indicates that the evaluation
index can be used for health monitoring with high
sensitivity. For example, when the stiffness is degraded by
10% in Case 1, the emulator neural network gives a RRMS
error, which has 21% of modulus increase compared to the
RRMS error of the healthy structure. And a 20% of
stiffness in stiffness results in a 43% modulus increase in
RRMS error modulus.
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5. Simulations on Localized Parametric
Evaluation with Neural networks

Up to now, neural networks have been widely used for
non-parametric identification for linear or non-linear
dynamic system for the purpose of health monitoring or
control. And neural network is proved as a useful tool. In
the study of Nakamura et al'™®  because of its
non-parametric nature, the approach under discussion can
not ascertain the degree of the stiffness decrease in qua
ntity. In this paper, a localized parametric identification
method by neural networks is developed. As described
above, for the purpose of real-time health monitoring, a
non-parametric identification method has presented. And
the RRMS error vector i1s related with the degree of
damage (the decrease in stiffness). If another neural
network which describes the relationship between the
RRMS error vector and the stiffness of substructure, can be
established and trained, the stiffness of the substructure can
be evaluated according to the RRMS error vector. This
procedure is corresponding to the step 3 and 4 in Figure 1.

As described above, the parametric identification is an
inverse problem. When neural network 1s used to solve the
inverse problem, the training data, which can be obtained
as the solution of the direct problem, is necessary. Some
structures with different degree of damage are assumed,
and the RRMS error can be calculated by the method
described in Chapter 2. In this paper, the structural damage
is assumed to result in stiffness decrease. The stiffness of
some assumed damaged substructures and the
corresponding RRMS error vector data in Case | are used
to train the localized parametric evaluation neural network
with error back-propagation algorithms. Let stiffness of
each story of the substructure equals to 1.0, 0.9, and 0.8
times of the original value respectively, and the
corresponding RRMS ermror vector can be calculated by the
method described in step 2 in Figure 1. So 27 pairs of
training data are decided.

A localized parametric evaluation neural network is
established. The input to the localized parametric
evaluation neural network includes the RRMS error vector
of the substructure. In order to improve the performance of
the localized parametric evaluation neural network, the hig
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TABLE 2 PARAMETER EVALUATION RESULTS

- Stiffness (10° N/m)
Ture Value 0.500 . 0500 { 0.450
Case | 0.504 0.491 0.455
Damaged 1
Structure | Forecast | Case | 0.501 0.486 0.456
No. 1 "~ Value 2
’ Case | 0.490 0.466 0.462
3
Ture Value 0.450 | 0450 0.450
Case | 0.463 : 0458 | 0.468
Damaged 1
Structure | Forecast | Case | 0.464 : 0.460 0.468
No. 2 Value 2 ‘
Case | 0.445 | 0425 0478
3
Ture Value 0.400 0.450 0.500
Case | 0.390 0.445 0.483
Damaged 1 1
Structure | Forecast | Case | 0.393 0.451 0483 -
No. 3 Value 2 .
Case | 0.373 ' 0431 0.493
3 ;

h-order terms of the square of the RRMS error are also
used as the input patterns. And the output is the forecast
stiffness of the substructure. The architecture of the
localized parametric evaluation neural network is shown in
Figure 10. In this study, for the substructure, the number of
neurons in input, hidden and output layer is 4, 8 and 3
respectively.

The localized parametric evaluation neural network is
trained with those training data. Then the localized
parametric neural network can be used to recognize the
unknown structural parameters (stiffness) from the RRMS
error vector. Thus, the inverse analysis can be avoided
through the training process of the neural network.

Without loss of generality, three damaged structures
with different degree of stiffness decrease are studied here.

According to the RRMS error vector, the stiffness of the
damaged substructure can be forecast through the trained
parametric evaluation neural network. The results are
shown in Table 2. From Table 2, it is clear that the
inter-story stiffness of each floor in the substructure can be
forecasted accurately in Case 1, 2 and 3 respectively. The
maximum error between the forecasted stiffness and the
true value is not great than 5%.

It is demonstrated that localized parametric evaluation
neural network can forecast the stiffness of the substructure
with high accuracy. Moreover, the identification results are
not depended on the earthquake excitations. This kind of
characteristics 1s very useful for practical application.

6. Conclusions

In this paper, a localized inverse analyses process for
health monitoring and parametric evaluation with the direct
use of dynamic responses by neural network was proposed.
First, for the purpose of health monitoring, corresponding
to a substructure, a localized emulator neural network was
constructed.

Numerical simulations shown that the architecture of
the localized emulator neural network corresponding to the
substructure is feasible, and the select of input and output
variables is reasonable and the selected vanables are
enough to carry out localized identification. For the
purpose of health monitoring, a suitable and practical
evaluation index was defined, and the adaptability of the
evaluation index was testified. And then a localized
parametric  identification diagram is conducted by
combining the localized emulator neural network and the
localized parametric evaluation neural network. The
performance of the proposed strategy is evaluated through
numerical simulations for substructures with different
degree of damage. The stiffness of the damaged
substructure can be identified through the localized
parametric neural network with good precise.

It is shown that the localized inverse analyses with
neural network by direct use of dynamic responses with
neural networks have the potential of being a practical tool
for health monitoring and parametric evaluation of civil
engineering structures, especially for large-scale structures
with great number of DOF. It is possible to apply this
approach to whole structure identification if the required
response records are available.

Acknowledgment

The writers gratefully acknowledge the financial support of
the Grant-in-Aid for JSPS Fellows to the first author.

References
1) Mcverry, GH, Structural Identification in Frequency

Domain From Earthquake Records, FEarthquake
Engineering and Structural Dynamics, 8, pp.161-180,

—427—



2)

3)

4)

5)

6)

7)

8)

9)

1980

Koh, C.G, See, LM. & Balendra. T., Estimation of
Structural Parameters in Time Domain: A Substructure
Approach, Farthquake Engineering and Structural
Dynamics, 20, pp.787-802, 1991

Agbabian, M.S., Masri, S.F. & Miller, RK., System
Identification Approach to Detection of Structural
Changes, Journal of Engineering Mechanics, ASCE,
117, pp.370-390, 1991

Wu, Z.S., Iwamatsu, S. & Harada, T., Computational
Modeling on Parameter Estimation of Large Scale
Structures From  Static - Response, in Third
Asian-Pacific “onference on  Computational
Mechanics, pp.1105-1109, 1996

Zhao, Q., Sawada, T, Hirao, K. and Nariyuki, Y,
Localized Identification of MDOF Structures in the
Frequency Domain, Earthquake Engineering and
Structural Dynamics, 24, pp. 325-338, 1995

Xu, B, Wu, ZS, & Yokoyama, K., Adaptive
Localized Vibration Control of Large-scale or
Complex Structures Using Multi-layer Neural
Network, in Proceeding of the Seventh FEast
Asta-Pacific Conference on Structural Engineering
and Construction, pp.261-266, 1999

Xu, B, Wu, Z8S., Yokoyama, K. & Harada, T,
Adaptive Localized Control of Structure-Actuator
Coupled System Using Multi-layer Neural Networks,
Journal of Structural Engineering and Earthquake
Engineering, JSCE, 18(2), pp.81-93, 2001

Sandell, Jr, N. R., Varaiya P., Athans M. & Safonov,
M.G., Survey of decentralized control methods for
large scale systems, JEEE Transactions on Automatic
Control, Vol. AC-23(2), 108-128, 1978

Magafia, ME., Volz, P & Miller, T., Nonlinear
decentralized control of a flexible cable-stayed beam
structure, Jowrnal of Vibration and Acoustics, 119,
523-526, 1997

10) Xu, B, Wu, Z8. & Yokoyama, K., Decentralized
Identification of Large-scale Structure-AMD Coupled
System Using Multi-layer Neural Networks,
Transactions of the Japan Society for Computational
Engineering and Science, 2, pp.187-197, 2000

11) Wu, Z.S.,, Xu, B. & Yokoyama, K., Decentralized
Parametric Damage Detection Based on Neural
Networks, Computer-Aided Civil and Infrastructure
Engineering, 2001(in press)

12) Ghaboussi, J. & Joghatatie, A., Active Control of
Structures Using Neural Networks, Jouwrmal of
Engineering Mechanics, ASCE, 121(4), pp.555-567,
1995

13) Chen, HM,, Tsai, KH,, Qi, GZ, Yang, JCS, &
Amiini, F, Neural Network for Structure Control,
Journal of Computing in Civil Engineering, 9(2),
pp.168-175, 1995

14) Xu, B, Wu, Z. S. & Yokoyama, K., Adaptive
Vibration Control of Structure-AMD Coupled System
Using Multi-layer Neural Networks, Joumal of
Applied Mechanics, JSCE, 3, pp. 427-438, 2000.

15) Nakamura, M., Masn,, Sami F, Chassiakos
Anastassios G. & Caughey, Thomas K., A Method for
Non-parametric Health Monitoring Through the Use
of Neural Networks, Earthquake Engineering and
Structural Dynamics, 27, pp. 997-1010, 1998.

16) Zhao, J,, Ivan, John N. & Dewolf T., Structural Health
Monitoring Using Artificial Neural Networks, Journal
of Infrastructure Systems, 4(3), pp. 93-101, 1998

17) Yoshimura, S., Matsuda, A. and Yagawa, G., A New
Regularization Method for Neural-Network-based
Inverse Analyses and its Application to Structural
Identification, Inverse Problems in Engineering
Mechanics, Bui, Tanaka et al., Balkema, Rotterdam,
pp.461-466, 1994

(Received September 14,2001)

—428—



