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Formulation and numerical implementation of soil constitutive model with a non-smooth
elastic domain was developed based on Koiter’s associated flow rule. The extension of
standard FEM applicable to the model proposed by Sekiguchi and Ohta (1977) was made by
adding a comer mode to assess plastic flow when a particular state of stress is placed at the
comner. The extra implementation is added without any modification to the whole procedures
of normal mode and general FEM codes. The comparisons between methods with/without a
consideration of comer mode under K -condition were illustrated for both plane strain and
axisymmetry. The effects of element assemblage and size of sub-incrementation were
discussed. It was found that disregard of special treatment for the comer would produce

unacceptable results in numerical analyses.
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1. Introduction

Formulation and numerical implementation of soil
constitutive models with a smooth/single yield surface have
already been well developed and become a standard code for
finite element method. Among many of engineering software
and package, general FEM codes based on the soil constitutive
model proposed by Sekiguchi and Ohta” (1977) have been
extensively recognized in Japan and still being improved
continuously. However, it has been found that a plastic flow at
the point of preconsolidated stress, which is related to a material
memory of the model, is unable to correctly evaluate plastic
strain increments due to a problem of mathematical singularity
on yield surface at which the gradient is not uniquely defined. A
geometrical representation of the yield surface in stress space
shows this point representing a ridge comer of asymmetrical
logarithmic spiral. As a consequence, the discontinuous slope at
the comer rules out the normality postulate; the similar difficulty
in numerical implementation is also found by Britto & Gunn®
(1987) and Gens & Potts” (1988) in original Cam-clay model”
{(Roscoe, Schofield & Thurairajah, 1963).

The discontinuity is suggested to be eliminated either by
rounding off using smooth approximating functions
(Zienkiewicz & Pande”, 1977) or adopting an ellipsoidal vield
surface (Roscoe & Burland®, 1968). Actually, there is no
theoretical objection to non-smooth yield surface (Koiter”, 1953,

Rudnicki & Rice®, 1975, Christoffersen & Hutchinson®, 1979).
Moreover, evaluation of plastic flow at the point of singu]arity
can be achieved theoretically without any modification of a yield
surface’s curvature.

One of the theoretical extensions to cover constitutive
models with the point of discontinuity, where elastic domain is
defined by non-smooth convex boundaries, is developed by
Simo, Kennedy & Govindjee'® (1988), showing that the
standard Kuhn-Tucker optimality conditions of convex
mathematical programming are essentially equivalent to the
multisurface counterpart of the conditions in Koiter (1953). By
the abovementioned approach, Pipatpongsa et al.">'? (2001a, b)
described an additional procedure to handle a difficulty when a
particular stress point is placed at the comer of yield surface in
stress space. Under this concept, K, consolidation process is
regulated by two activated yield loci referred to upper and lower
yield surfaces intersecting each other in axisymmetric triaxial
plane to form the hardening vertex, in which plastic flow at the
point of discontinuity lie within the fan of possible directions.

The approach of adjoining the singular corer by only two
conceivable yield finctions can reduce bulky equations required
by Koiter’s condition for non-smooth multisurface plasticity.
The coefficient of earth pressure at rest governed by the SO
(Sekiguchi-Ohta) model can be obtained™ by connecting a
typical normality of individual yield surface to Koiter’s
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associated flow rule (Pipatpongsa et al., 2001c). The application
of compatible Kuhn-Tucker optimality conditions and Koiter’s
flow rule to the model is illustrated by unconditionally stable
return-mapping algorithm' (Pipatpongsa et al., 2001d).

In a view of practice, most of natural soil formation
possesses a certain degree of over-consolidated ratio; therefore,
an initial stress is placed inside a yield surface rather than at the
comer. To avoid the same problem in normal consolidated
young clay, an initial stress placed at the comer is put inside
yield surface intentionally by factoring it with a number that is
slightly less than one. Besides, a calculation of one-dimensional
consolidation is obtained by assuming soil media as an elastic
material. By means of those reasons, error due to the singularity
is not exaggerated in finite element program applicable to the
SO model, for example DACSAR (fizuka & Ohta'™, 1987).
However, in rigorous aspect, this fact cannot be overlooked and
violated any longer.

In this paper, a standard FEM procedures based on smooth
yield surface was corrected by adding a corner mode 1o assess
plastic flow when stress is defined at the corner in particular.
Detailed procedures with theoretical background are provided.
A continuum tangential stiffhess tensor corresponding to the
singular corner of the SO model was formulated. The
comparisons between methods with/without a consideration
corner mode under K-condition were illustrated under plane
strain and axisymmetric conditions. The effects of element
assemblage and size of sub-incrementation were discussed. The
study may provide a source of numerical implementation to fill
in the overlooked procedure in previous development of FEM
applicable to the SO or similar models.

2. Soil Constitutive Equations

The SO model has been proven to produce predicted
behaviors which are consistent with observed field responses for
anisotropically consolidated soils. The model is based on critical
state theory considering dilatancy, reorientation of principal
stresses, anisotropy and time dependency. The SO model is
reduced to be the original Cam-clay model in case of initially
isotropic stress condition.

2.1 Forms of the Sekiguchi-Ohta Model

The two-invariant, rate-independent  elastoplastic
associative soil constitutive model proposed by Sekiguchi and
Ohta (1977) is originally expressed by a convex yield (plastic
potential) function:

7

fle',h) = F(p';n" &) = an(i,J +Dn" =l =021)
where o = effective stress tensor; # = selective isotropic
hardening parameter; p’ = effective mean stress; n# =
generalized stress ratio; ¢, = volumetric plastic strain; p’, =
effective mean stress at the end of completion of anisotropic

consolidation (typically, K, consolidation); M = slope of critical
state line in a p’-q plane; D = coefficient of dilatancy. Internal
variable / controls a size of a yield surface and can be selected
either as stress-like or strain-like variable. A form m Eq.(2.1)
serves as strain-like type, which physically means that a
hardening/softening characteristics of material is induced by a
plastic volumetric strain. On the other hand, a stress-like type
can be formulated from Eq.2.1) using relations given in
Egs.(2.2)(2.3). Without loss of originality, an alternative form
of the Sekiguchi-Ohta model with stress hardening as parameter
can be expressed by Eq.(2.4)
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pc_poexp((}\_‘()/(l-}‘eo)] (22)
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'

fle', k)= f(p',0', p,) = MD ln(i,) +Dn' =0 (4
p

C

where p’, = stress hardening parameter

2.2 Generalized Convex Format

For later reference throughout the paper, it is more
convenient and general to rewrite the yield function of Eq.(2.4)
in terms of stress invariants and joint invariant between stress
tensor ¢' and stress hardening tensor o', which is kept along
paths of corner as,

f(6',6'. )= f(I;,J,,1,) inwhich

_ 343
FUp, Ty 1) = MD 1n(711—) +DX2 9 2.5)

cl » ]1
where, /|=tr(s')=1:¢' 2.6)
I=tr(6',)=1:6", 2.7
1
s =o-'—§111 =A:¢ 2.8)
. :

S, =cc~§1dl =A:0o, 2.9)
J ymstr(s?) = Ls:s (2.10)
22 2 '
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J o= —Z-IV(SC )=ESC -8, (211)
S, s
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5:s (2.14)

The second-order identity tensor is defined by

1 =0,¢e ®e; 2.15)
The identity forth-order tensor is defined by

1 E%[B,A,é/, +6,,6‘,k]ei®ej®ek ®e (2.16)
The d;viaton'c forth-order tensor is defined by

Asl—%(l@l) .17)

The notations of tensor and tensorial operation are shown
in Appendix E. A schematization of reciprocal basic used in
numerical implementation is supplemented in Appendix F.

2.3 Geometrical Representation

The SO vield surface in three principal stresses space can
be conveniently presented by referring to a new Cartesian
coordinate system (X, X,, Xs) on the deviatoric plane (s-plane)
as shown in Fig.1. The parametric form of yield surface on (p’,
) is formulated by coordinate transformation system (see,
Appendix A). Fig.2 shows a distorted bullet shape of elastic
domain in principal stress space and in different views on plane
/2, [8 and © which refer to deviatoric plane, meridional plane at
w=0 and m, and top view (0> 0'5) plane respectively. It is
observed that there is a singular comer on the yield surface.
Hence, the SO yield surface is not smooth at the particular stress
point. This point is identified as the hardening vertex where
material memory of consolidation history is kept as hardening
parameter of the model.

3. Incremental Stress-Strain Relation
It is generally assumed that strain increment can be
decomposed into elastic and plastic parts, denoted by

£=¢"+¢” 3.1

Associated flow rule is applied to the SO model to determine
irreversible plastic flow emerged in an outward normal direction
to the plastic potential coincided with yield surface.

. af ; 5
SF = Y—-—y: 'Yau"/ (_)2)
do
where v is a proportional factor or consistency parameter

Consequence of the consistency relation gives
y Bgf 118
He +H g

Elastic tangential moduli ¢, plastic moduli H. and H, are
defined by,

\] 1]
) O3

Figure 1: Deviatoric plane in principal stress space where
Cartesian coordinate is placed

[123 1 1.3

X V7 Xz XYz

Figure 2: Various views of the Sekiguchi-Ohta yield surface in
principal stress space

¢ =K1®1+2GA 34)

H,=d,f:c":0,f (3.5)
l+e, 6 : ﬁ

[1/1 = _TKU.(aU'.f)pL d/l'(/‘ = ’/‘(ac'./) (‘)6)

€, is a reference void ratio at a state of o’,. A (=0.434C.) and x
(=0.434C;) are compression and swelling indices obtained from
triaxial tests. Failure condition is defined when the plastic
modulus H, approaches zero. According to Eqs.(3.1)-(3.6), the
incremental stress-strain refation can be formulated by

5 g
10y / ®dgf e |, G7)
H, +H,

G6'=c’:(€-Yd,[)= {c" =

K and G are referred to bulk and shear moduli respectively. v' is
Poisson’s ratio of soil skeleton. Dependence of K and G on p’
suggests a hypo-elastic model is employed in a formulation.

Eetfies) (.8)
K
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3(1-2v')
2(1 + v')

(3.9

The first derivative of the SO model respective to stress tensor is
shown in Appendix B. Substitution of these terms to Eq.(3.7)
vyields,

10y f®igf e’ (KBI+J€%)®(KB1+\/EGE)

z = ; (3.10)
et KB2+3G+-Lp
3D
where
o, f=3—D— KBI+2G\/§’E] (.11)
1 2
pY D
H,+H,=|3= (K|32+3G)+3—B (3.12)
11 Il
3, [3, _
B=M-3¥Y"2_ |Z(y,:7) (3.13)
1 2
oK) g 5 5 (3.14), (3.15)
1+2K, ||s“ 2J ,
[ 1
PR
6
Y 3 B R (316)
3 3
o o -¥8
6

7. is an aligned direction along hardening vertex in stress space.

4. Treatment of the Singular Corner

Since the stress state at the singular comer is referred the
stress at triaxial condition'®, Fig.3 shows the yiéld Joci and
intersecting comner in the meridional plane associated to the
triaxial stress plane (Rendulic’s stress plane). The wpper and
lower yield loci are expressed as,

3y3/, 3 3J02J=0

cl Il Icl
3./3J 3./3J

fuydylyy = M| D) p[ N2 e g
Icl 11 ]cl

4.1),4.2)

Eq.(4.1) and its conjugate Eq.(4.2) are chosen as candidates
among conceivable yield fimctions passing the comer. Since
bulky equations are generated in corresponding to the number of
non-smooth yield functions in concern, this approach gives the
smallest forms needed by Koiter’s condition. Conceming with
Koiter’s associated flow rule, plastic flow at the comer is
interpreted as a resulting vector of plastic flow of upper and
lower yield loci and expressed by,

&7 =y 0afy +¥,00/1 @43)
Incremental stress-strain relation is expressed by
6'=c’ 1 (£ -27) @4
According to App. D, substitute Eq.(D.9) into (4.3), obtain
o7 o (YU) . (aa'fU) _x! _(ac'fU et 8) . (as'fU) @5)
YL ) \9e/L Ogfy €8 ) \ 0 S

Substitute Eq.(4.5) into (4.4) to obtain a stress increment,

®g, + ®
6'=1lcf - Xov8u @8y +AuL8u WEL : @6)
+X08L OBy + %18, P8,
where
A3J
gy =¢ 19,1y =3]—D K M—3——1 2 1+2G\/§nJ(4.7)
1 1

M+3—@

1

g =¢c":0q/] -22lk

Iy

1- ZG\/gn
2

@38)

% =X"" is defined in a way that,

Xou =X XuL = X025 X0 = X2.15X0n = X2,2 4.9

According to Appendices C and D, coupled hardening matrix is
expressed by Eq.(4.10) as,

I I
2| Kp,® +3G+-L Kpyp, —3G+—L
X (32) By 3?5(/ BBz + 3Df5L
I 2 1
1 KBLBU_3G+3_IDI3U KB, +3G+3_2)—|3L

4.10)

q=0(1_cr

Upper yield I

Figure 3. p’-q plane in the meridional section is associated to the
triaxial stress plane where the corner is placed

Eq.(4.6) reveals a incremental stress-strain relations in Eq.(4.11).
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6'=c? i @.11)

A formulation of tangential elastoplastic moduli considering
corner mode is generally expressed by Eq.(4.12) as,

¥ =c - B;Xa,ﬁ (ga ®g[3)
o, ,L}

4.12)

5. FEM Formulation

Four-node displacement-based element with 2x2 Gauss
integration is formulated by standard FEM methodology for
both plane strain and axisymmetric conditions. A procedure for
comer mode is added to normal mode by employing tangential
elastoplastic moduli defined in Eq.{4.11). A comer mode is
judged to activate by extra condition given in Eq. (5.1). If the
condition is invalid then a computation is handled by a general
mode, which simply means stress is located out of the comer. A
condition for elastic unloading is defined in Eq.(5.2).

Sy =2 ZERO and f; = ZERO .

L, <ZERO and L; < ZERO (52)
where ZERO is a zero truncation allowed in computation,
usually set to a very small positive number, e.g. 10

FEM simulations of K -condition can be performed by
considering one-quarter of specimen enclosed by stiff lateral
boundary depicted by Fig4. Type A model refers to a true K,
condition controlled by zero lateral strain while type B refers to
a reversed K, condition controlled by a lateral pressure
generated by K, value. Geometric boundary conditions are
shown in Fig5 showing both single and four-element
assemblage denoted by numerator 1 and 2 respectively. Material
parameters with initial conditions for a class of inviscid SO
model are listed in Table 1. Code names of all cases are
tabulated in Table 2. Symbols + and - notify a calculation
performed with or without corner mode. Applied vertical load of
O’y (100 KN/m?) is further subdivided into 100 sub-steps for all
cases except two latest cases where 1000 and 5000 sub-steps are
applied to observe sizes of sub-steps affected in computations.

Table 1: Soil parameters

Parameter Description Value
D Coefficient of dilatancy 0.101
A Irreversibility ratio 0.825
M Critical state parameter 1.120
V' Effective Poisson’s ratio 0.364
K, Coefficient of earth pressure (NC) 0.572
Ky Cocefficient of earth pressure (in-situ) ~ 0.572
A Compression index 0.342
S Void ratio at ¢’ 1.500
Cvo Eff. preconsolidation pressure (kN/m?) 100

o'y Eff. overburden pressure (kN/m?) 100

6. Calculation Results
Results of effective stresses, shear stress and ratio of

horizontal stress to vertical stress were listed in Table 3. Strains
and ratio of deviatoric strain to volumetric strain were shown in
Table 4. Isotropic hardening stress, volumetric and deviatoric
plastic strain, ratio of deviatoric to volumetric plastic strain and
ratio of volumetric plastic strain to volumetric strain were shown
in Table 5. Results in Tables 3-5 indicate that, under
K-condition, FEM procedures with/without comer mode give a
substantially different results. The exact solutions given in
Eqs.(6.1)(6.4) are obtained from a basic 1-D consolidation
problem. Therefore, cases of Alat, Alp+, Blp+, A2a+, A2p+
and B2p+ are equivalent one another and provide the reasonable
results. - Calculations without comer mode failed to give
reasonable results.

Oy = Toyny A0y > Oxr) = O'z(0) = KoO'pizy  (6.1)

1 '
Txy(rz) =0, pvc ='§"O' y(z)(l+2Ko) (62)
A o
ey(z) = In '*y(Z)“ s Ex(r) = 82(9) =0 (63)
l+e, Oop(z)

BB 2B 64)

It is found that results obtained by single element (for Alat,
Alp+, Blpt) and four-element (for A2a+, A2p+, B2pt)
generate almost same responses due to a class of homogeneous
deformation. There is no effect of subdivision of spatial domain
in the calculation, but there is an effect of subdivision of time
domain (sub-incrementation of loading) as illustrated by results
obtained from case Ala+* and Ala+**, that is, a more exact
result can be taken for a finer sub-step. Herein, 5000 sub-steps
are required to yield an exact solution. Type B model gave
correct responses only for plane strain condition. Therefore, a
restraint in plane strain condition is satisfied for a reversed or
stress-controlled K-condition where stress path is kept along the
comer. A comparison between Ala+ and Ala- alone are shown
in Figs.6-9. 1t is clearly found that without comer mode, stress
paths are mobilized along K-line, resulting in fluctuated paths in
Fig.6. Volumetric contraction given by cases without corner
mode is less than a solution (see, Figs.7 and 8). Moreover, the
slope of e-log(c’,) curve (see, Fig.9) is not equal to the
compression index (in logescale) C, while a procedure with
comer mode can produce responses associated to the solution.

7. Conclusion

FEM procedures including a comer mode were formulated
using Koiter’s associated flow rule to evaluate plastic flow and
derive for incremental stress-strain relation at the hardening
vertex of the SO yield surface in meridional plane under
K,-condition,
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Table 3: Calculation results: effective stress (KN/m?)

100kN/m? 100kN/m2 : : : 2 ,
Case  Ohn 9y Twum  9xe) Txn/ Ty
Ala- 114.98 200 0 11498 0.575
] ® Alpt+ 11450 200 0 114.50 0.572
Z Z Alp- 11498 200 0 114.98 0.575
- - Y - < Blat+ 11375 198.13 -9.08E-5113.75 0.572
! . 3 | 3 Bla- 114.50 200 0 114.50 0.572
' ' Blp+ 114.50 200 0 114.50 0.572
fﬁﬂ Aljﬂ:‘l?l:l‘ Blp- 11450 200 0 11435 0.572
Al2a+ 114.50 200 0 114.50 0.572
100KN /2 L00KN/n? A2pt 11450 200 0 114.50 0.572
B2at+ 113.80 199.50 0.03 113.55 0.570
Type A Type B B2p+ 11450 200 0 114.50 0.572
Figure 4: K, condition (type A) and reversed K, condition given :i:i: N i ijg g ;88 g } %32 8 82 ;g
by applying a lateral pressure generated by K, value (type B) Exact 11 4 50 200 0 114.50 0. 572
100kN/m? 100KN/m?
@ vy @ WA, ‘ '
® d ) ® Table 4: Calculation results: strain
‘ y y { g i iIi § - Case ex(r) ) Y xy(rz) €2(0) € /Sv
@ | 3 s ® Alat 0 0.094 0 0 0.667
% x XX xx | Ala- 0 0.030 0 0 0.667
XX | XX Alp+ 0 0.094 0 0 0.667
Alp- 0 0.030 0 0 0.667
MY @ O ® Bla+ 0.025 0.043 1.21E-3 0.025 0.137
Bla- 5.89E-3 0.022 O 5.89E-3 0.323
Model At Mode! A2 Blp+ O 0.094 O 0 0.667
Blp- 7.28E-3 0.025 0 0 0.462
@ J;%ME Dk Ada+ 0 0.094 0 0 0.667
® A2pt+ 0 0.094 0 0 0.667
@ ) B2at 0.020 0046 927E-4 0.019 0208
% % g ; B2p+ O 0.094 0 0 0.667
<@ < Alat* 0 0.095 O 0 0.667
w 3 g Alav** 0 0.095 0 0 0.667
Exact O 0.095 0 0 0.667
Q
@O =L@ O Table 5: Calculation results: plastic variables
Mode! B Mode! B2 Case  p' & & e ley &)/
- . . . I Ala+ 14228 0.077 0.052 0.667 0.823
B et ool aescription of single element and 12 14384 0014 924E-3 0683 0448
Alp+ 14228 0.077 0.052 0.667 0.823
Alp- 14334 0.014 924E-3 0.683 0.448
Table 2: Case study classification (100 sub-steps) Bla+ 14157 0.076 2.13E-3 0.028 0.823
Code  Geometry/Elements Corner effect gia' %fé%g gg;g 83(5)2 8(6)2(7) 82;2
. ! . pt+ . . . . .
[’ﬂ:’“ :’;:Ymngiz% icg";‘;;ggred Blp- 142.69 0.016 5.42E-3 0339 0.491
§ ) . . A2at+ 14228 0.077 0.052 - 0.667 0.823
2}5* g{zg: 25:%2} icgrll‘s;ggred A2p+ 14228 0.077 0052 0.667 0.823
. . . . B2a+ 14245 0.069 6.67E-3 0.097 0.807
gi: Zﬁzyﬁzgizg icor?s;ggred B2p+ 14228 0.077 0052 0.667 0.823
Blot  olais stra/B1 i q Ala+* 14293 0078 0.052 0.667 0.825
B 15- glzgz Sai/B1 fg":lljiegre Ala+** 142,98 0078 0.052 0.667 0.825
Adat  axisymmetric/A2 considered Exact 143.00 0.078 0.052 0.667 0.825
A2p+  plane strain/A2 considered
B2a+  axisymmetric/B2 considered The extra implementation is added without any
i%gj: X plane stra/;nl/ffb 1000 Sub?:trémsdered modification to the whole procedures of a normal mode and
Alat®* Ala+ bz 5000 sub-steEs general FEM codes. Disregard of special treatment for the
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Figure 6: Normalized stress paths of vertical and horizontal
stresses

Stress-Strain Curve
]

2 T
2
5
17}
=
8
B
> 151 —
=
[
N
=
E
<o
z
1 | | | !
0 2 4 6 8
Vertical strain (%)
— Alat
000 Ala-

Figure 7: Normalized vertical stress-vertical strain curves
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Figure 8: Strain paths of vertical and horizontal strains
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Figure 9: e-log(o’,) curve under compression loading

It is clearly seen that a corner mode is considerably needed
especially for a particular type of problems such as analysis of
K, consolidation, self-weight consolidation, K, creep and ageing
as well as site responses when a level of water table is changed.

Appendices

A: Cartesian coordinate system in principal stress space
Relation between Cartesian coordinate system in principal stress
space is expressed by using transformation tensor Q.

x=Q-¢ (A1)

-1

5
S

G, X

t
—

]
—

where Q=

X3

lﬁd"‘wll\)

5i-5

-5
g

xz-axis is coincided with hydrostatic pressure axis and the
principal mean stress is marked by,

X3 -\3p

Substitute Eq.(A.2) to Eq.(A.1) and solve for the arbitrary stress,

(A2)

¢'=Q7 -x (A3)

The locus of yield surface intersecting with a constant mean
stress can be obtained by substituting Eq.(A.3) to the yield
function. Consequently, Eq.(2.4) yields,

f(s', p',) = MD ln(L')
P

(A5)

=0

12

. D\/?»cz2 - 2\/gx2nop'+2n02p'2 +3x12
p

Rearrange Eq.(A.5) to a particular expression below

—191—



4o 76_) [“fzi(“))

R=ZMin( L), (A7)
J6 | .

= Rsinw X —Rcosw+in )a (A8,A9)

’ 2 \/g o + Oy £

where 0w€[0,2x], p'€(0,p',.]

B: First derivatives of the Sekiguchi-Ohta yield function
respective to stress tensor
By chain rule, the derivative can be written in terms of stress
invariants

8o f =8, Pl +33 f35,:0,8 ®B.1)

Bl =1, 85J,:8,5 = (A —§1®nc):§ (B2,B3)
Substitute Eqs.(B.2) and (B.3) into (B.1), obtain,

3y f = (allf- 2jzajzf§(qc :ﬁ))l +427,07, /i (BA)

where
D 37,
all f = I_ M - 3 I J (B.S)
1 1 :
= 33D
21,95 f 37 B.6)
1

C: First derivatives of the upper and lower yield loci
respective to stress tensor

By the similar fashion with App. B, the derivatives of upper and
lower vield loci are expressed by

0o fry =05 Syl + 0y, fys =0, fyl+42J,8,, fym  (C.1)

0o fL =01, /1140, f18=0; fr1+42J,0,, fin (C2)

where

R e A ) P57 €€
1

oy -2 M+3‘/—_]\/—27 1--BL .o

ne—b___S (oX))

D: Consistency parameters of the upper and lower yield loci
Consistency parameters are determined from consistency
condition subjected on both upper and lower yield loci to ensure
both loci are active and activated under loading condition.
Equate time derivatives of both upper and lower yield loci to
zero and evaluate consistency parameters yy and y; .

-_—ac'fU :6'+ap|chp'c=0 (D'l)
f, =8, f; 1649, f1 p'o=0 D2)
The evolution law of isotropic stress hardening parameter is
=t plc 4
= £, 3
Pe=3m (D3)

The derivatives of upper and lower yield loci respective to p’;
are shown by

MD
ap‘ch = ap‘ch =

D4

4

Substitute Eqs.(D.3) and (D.4) into (D.1) and (D.2), obtain

fU=acva:c€:(é—ép)+ap.chAZBé”:l:O D.5)
fL=aG.f,:ce:(é—é”)+a A Pe ¢’:1=0 (D.6)
‘ Pe™ MD

Rewrrite Eqs.(D.1) and (D.2) by substituting Koiter’s associated
flow rule Eq.(4.3) into Eqs.(D.5) and (D.6), obtain

YU(H(e/U +H5)+YL(H(EJL +Hf)= L, D.7
YU(HEU"'HL,/})"'YL(HZL"'H[{’): L (D.8)

where Lj; =3d,fy 1¢“:€, L =9,/ ¢

Hle/U = ao"fU :ce :ac'f(lf HZE/L = ao"ﬁ/ :cf :ac'fL

HEU = aG'fL e :ac'fU= HEL =as‘fL ref :ac'fL

H =trlag fy ), HE =1r(0,)

Formulate Eqs.(D.7) and (D.8) to linear algebraic system and
solved for consistency parameters

L
Tu)_ x-1.[™ DY)
YL L
e e 14
where X H(eJU +Hy H(e”‘ * Hé (D.10)
Hipy+Hj Hp +H]
D D
H =3By s H =375, ©.11),(D.12)
1 1
J3J A3J
By =M -3 8, =pm+3¥ 2L (D.13),D.14)

A 5
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Hfy = (2) (Kﬁu2 +3G) (D.15)
, :
D 2
H5L=(37—)(K3UBL—3G) D.16)
1
D 2
Hyy = (31— (KﬁLﬁU -3G) D.17)
1
3pY
HE, —(1—) (K s 3G) (D.18)
1

E: Notations of tensor and tensorial operation

Standard notation is used throughout. Boldface symbols denote
tensors. Ifalic symbols denote scalar components. A
second-order tensor on Buclidean space E in respect to an

orthonormal basic {e ,} are shown by,

T=T,e e, E.1

Dot and double dots are used to indicate simple and double
product (contraction) defined as following,

T-D=7,D, (e, ®e,)-(ek ®e,)
=T7,D, (e,. ®e,)(ej ‘ek) (E.2)
=T, Dy (e, ®¢;)

,(e,@ej) (e, ®¢;)
T Dy (& ek)(e el) E3)
=T;Dy

A double product of forth-order tensor and second-order tensor
is expressed by,

C:D=Cyye; ®¢; ®e, ®e :D,e,Qe,
= Cyye; ®e; (er e, )(er €, ) Dy (E4)
=CyuDye; ®e;
A component of double product of forth-order tensor and
forth-order tensor is expressed by,
(c: E),jk, = Cyymn Emnia (E5)

A double product of forth-order tensor C and its inversion gives
an identity forth-order tensor shown by,
cl:.c=Cc:c!'=1 (E.6)

A double product of identity forth-order tensor I and
second-order tensor results in a symmetric projection of that
second-order tensor as,

I:T= [6,,(5‘,, +c5,~,6jk]e, ®e; e, ®e; :T,,e, e,

1

1
2
=T, " [6ikéﬂ +(5,,6jk]e, ®e, (e e, )(e -¢,)

1
=T —i [5ik5jl + 5i15jk ] € ®ej6km5[n

1
= Tkl 5 [6ik6jl + 5’-[6]-]( ] e,' ®eJ

1

=5[T,.J-+Tj,-]e,-®ej ET)
A forth-order tensor mapping stress and stress deviator is
defined herein as deviatoric forth-order tensor A. The derivation
is shown below,

s=c—%(l:c)1=[l—él®l ‘6=Ac (EB)

Symmetry is preserved for deviatoric forth-order tensor A as,
r_q4r 1 T 1
A =1 —§(1®1) =I-§(1®1)=A (E.9)

A double product of deviatoric forth-order tensor A and
isotropic second-order tensor is zero tensor.
1 1
A:1=I:1—§(1®1):1=1—§(3)1=0 (E.10)
A double product of deviatoric forth-order tensor A and stress
deviator s is a mapping to itself's,
1 1
A:s=I:s—§-(1®1):s=s——3—(0)1=s (E.11)
F: Schematization of reciprocal basic
Apart from the tensor basis ¢;®e;, which is independent of any
preferred choice of basic for [, there is an additional linear
mapping 1. set in space to characterize material anisotropy in
particular. A resulting reciprocal basis considering a relative
relation between Cartesian and anisotropic mapping quantity is

schematized in Fig.10 and Fig.11 and also written in expressions
given below,

c'=p'l+pn, +5s F.1

—pcl+pc“c (Fz)

Relative stress deviator s in Eq.(F.3) is coaxial with deviatoric
plastic flow; thus, it is more suitable than stress deviator s in
the manipulation of anisotropic constitutive equations.
S=s-p'n, =42/,0 E3)
As a result, a stress tensor can be represented in terms of

reciprocal tensor bases {1, N> H} .
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Figure 9: Yield surface on meridional plane
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