Journal of Structural Engineering Vol.48 A(March 2002)

JSCE

GLOBAL ELASTIC SHEAR BUCKLING ANALYSIS OF CORRUGATED
PLATES WITH EDGES ELASTICALLY RESTRAINED AGAINST ROTATION

Chawalit MACHIMDAMRONG”*, Eiichi WATANABE"* and Tomoaki UTSUNOMIYA***

*Student member of JSCE, Graduate Student, Dept. of Civil Eng., Kyoto University
Yoshida-honmachi, Sakyo-ku, Kyoto 606-8501, Japan
**Fellow of JSCE, Ph. D., Dr. Eng., Professor, Dept. of Civil Eng., Kyoto University
Yoshida-honmachi, Sakyo-ku, Kyoto 606-8501, Japan
***Member of JSCE, Dr. Eng., Associate Professor, Dept. of Civil Eng., Kyoto University
Yoshida-honmachi, Sakyo-ku, Kyoto 606-8501, Japan

This paper presents an estimation of global elastic shear buckling strength of corrugated plates consid-
ering the influence of elastically rotational restraint on boundary edges. The corrugated plate possesses
higher shear buckling strength comparing to a flat one and it has been used to replace concrete web in
PC box girder in recent bridge construction in Japan. In this study, the coirugated plate is considered as
an orthotropic flat plate. Thick rectangular plate theory is used and Rayleigh-Ritz method is utilized in
extracting eigenvalues. Elastically rotational restraint on boundary edges is taken into account in'the form
of rotational spring in the analysis. Prediction of buckling strengths of corrugated plates is carried out
using the Rayleigh-Ritz method, which was proved to be consistent with those as predicted by a proposed
formula using a design manual and was found also to cover the more general cases of elastically rotational
restraint on the boundary edges showing transition curve of plate buckling strengths from the case of simple
support to the case of clamped support. A finite element analysis was also carried out to verify the accuracy
of the proposed method. As a result, a discrepancy is found between the buckling strength by the finite
element analysis and that by the proposed analysis; however, the formula adopted in the design manual

may be thought to be conveniently used because it can lead to the conservative design.
Key Words: Global elastic shear buckling strength, Corrugated web plates, Elastically rotational restraint,

Rayleigh-Ritz method, Mindlin plate theory.

1. Introduction

Corrugated steel plates have been recently utilized in
construction of new bridges in Japan. Concrete webs
in conventional PC box girder are replaced with corru-
gated steel webs. Corrugated shape of the plate acts
as vertical stiffeners and consequently increases shear
buckling strength of the girder. This helps reducing
the weight of the structure. However, in the estimation
of global elastic shear buckling strength of the plate,
estimation formula for the design was derived basing
on thin plate theory and a support condition was con-
sidered as simple support {1]. This formula is used and
noted in Design Manual of PC box Girders with Corru-
gated Steel Web proposed by Research Group of Com-
posite Structure with Corrugated Steel Web [2].

The aim of this study is to make a more precise pre-
diction of global elastic shear buckling strength of the
plates. Especially, elastically rotational restraint on
the boundary edges is considered and its influence on
plate’s buckling strength is investigated. Since some-
times, unfirm or partial attachment at the support
of the plate unintentionally causes decrement of shear
buckling strength and it is a question of how serious it
affects.

The estimation is based on equivalent orthotropic

plate consideration. Thick rectangular plate theory or
Mindlin plate theory is used. On the boundary edges,
elastically rotational restraint is taken into account in
form of elastically rotational spring.

Rayleigh-Ritz method is employed, and the relevant
energy functions are obtained. Trigonometric series are
selected as trial functions, in which they meet the re-
quirements on the boundary condition. Global elastic
shear buckling strength of the plate is calculated by
standard eigenvalue extraction procedure. Elastic con-
stant estimation method that is used to transform a
corrugated plate to an equivalent orthotropic flat plate
is presented.

Estimation of buckling strengths of six simple cor-
rugated plates, different in degrees of inclination and
plate’s dimensions is carried out. By varying stiffness
of rotational spring on the boundary edges, its influ-
ence on buckling strength is examined. The plates are
also modeled and analyzed in finite element analysis, in
which buckling strengths are calculated.

Conclusion is made on the influence of rotational re-
straint on the boundary edges to buckling strengths of
the plates and discrepancy between finite element anal-
ysis and this analysis.



Figure 1: Mindlin plate geometry

2.. Orthotropic Rectangular Mindlin

Plate

Theoretical analysis is based on the assumption that
a corrugated web can be analyzed as a rectangular or-
thotropic flat plate with uniform thickness. This as-
sumption on an orthotropic flat plate simplification was
given by Easley et al. [1] as (1) the number of repeat-
ing corrugation sections in a diaphragm is usually large
and their dimensions small, compared to the overall di-
mensions of the diaphragm; (2) the interest is in over-
all buckling behavior and not in localized effects; and
(3) the buckle patterns which appear in test specimens
seem to be independent of local corrugation shapes [1].

The displacement fields of Mindlin plate theory [3],
can be expressed as follows:

U(ZL‘, Y, Z) = wa(xay))
v(x,y,2) = 2¢y(z, ),
w(z, ¥, 2) = wolz,¥),

1)

where wg is displacement along z-axis in the middle
surface, ¥, and ¢, are cross-sectional rotations in x
and y-direction, respectively (Figure 1).

By infinitesimal displacement theory, the cross-
sectional rotations of plate (1), shear deformations ()
and displacement of the plate are related as follow:
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P = Yz — 3—3303
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Yy = Yyz — By (2)

The relation between stress and strain for orthotropic
material in plane stress condition is:

o = Dk, 3)
where, o, ¢, and D in matrix form are:
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Figure 2: Plate with rotational springs

Here, E; and E, are modulus of elasticity in 2- and y-
directions, respectively. v, characterizes the transverse
strain in y-direction, when the material is stressed in z-
direction, and v, characterizes the transverse strain in
z-direction, when the material is stressed in z-direction.
K, and K are transverse shear correction coefficients
in z-z and y-z planes. Shear modulus of elasticity in
z-y, z-z and y-z planes are Gy, Gz. and Gy, respec-
tively.

Strain energy, Ui, stored in plate can be obtained
from the above strain-displacement relation and Hook’s
law as below:

U = /V X DedV
1 [ore By O
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where h denotes plate thickness, and Dz:E(TE—z%ﬁ’

3 3
Dy = 12(?-5; vg)? Dwy:Gwy%-

Edge elastically restrained against rotation as shown
in Figure 2 is considered due to the fact that actual
boundary condition of a real system is mostly not clas-
sical, but somewhere between simple support and fixed
support [4]. Rotational spring constants in z-direction
at z =0 and z = q, in y-direction at y=0and y = b
are designated as kz1, kw2, ky1, and kyo, respectively.
Strain energy stored in rotational springs, Us, is:

1 a
Uy = 5/0 (ky1¢3'y=0 + ky2¢§ly=b) dz

b
+ ‘;‘/0 (kxl"pilx:O + km2"/}§lm=a) dy. (8)

Potential energy of the plate , V1, which is of in-plane
shear load, Ny, as in Figure 3 is:

- e ()

(9)
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Figure 3: Plate under in-plane shear

Figure 4: Force notations of plate

Potential energy of external loadings, Va2, as shown
in Figure 4 is:

Va :/0 [(Mywy + Mysthe + Qywo) |y=b
- (My'lr[)y + Mym"ﬁz + Qy’IU()) lyzo] dz
b
+ /0 [(Mx¢x - Mmyd)y + wao) |m=a

— (Mythz — Mzyy + Qzwo) |m=0] dy. (10)

Here M, is bending moment in z-direction, Mg, is
twisting moment in z-direction (around z-axis along y-
direction edges), and so on.

The total potential energy function of rectangular or-
thotropic Mindlin plate can then be written as follows:

N=U,+0,-V; - V2. (11)

3. Rayleigh-Ritz Method

In calculation of plate’s buckling strength, Rayleigh-
Ritz method is used in this study. Essential to this
method is selection of trial function, where trigonomet-
ric series are used.

The trigonometric series satisfying hard type simply
supported boundary edge condition [5] are shown be-
low:

wolé,n) = Z Z A;jsin(im€) sin(jmn),

=1]1

= Z Z B;j cos(in€) sin(jmn),

=1 j=1
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]
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(12)

Here dimensionless variables, £ and 7 are employed,
by replacing £ = z/a and 1 = y/b. These trigonomet-
ric series yield zero displacement along all edges, zero
z-direction rotation (¢¢) on y = 0 and y = b edges,
but arbitrary on x = 0 and £ = a edges, and in the
same fashion for y-direction rotation (¢,). The total
potential energy equation, II is obtained by substitut-
ing Equation 7, 8, 9 and 10 into Equation 11. It is then
made dimensionless and set & = a/b. It is shown below:
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Note that, potential energy of loading expressed by
Equation 10 vanishes naturally for the case of hard type
simple support edge. Substituting trigonometric series,
Equation 12, into dimensionless total potential energy
equation, Equation 13 and then differentiate the func-
tion with respect to unknowns, A;;, B;;, and Cyj, one
obtains:
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Figure 5: Cross section geometry of corrugated web
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The above equations can be rearranged and written
in matrix form, to solve for unknown coeflicients as fol-
lows:

K{I K{2 K{3 Aij Aij
symm Ki, Cij 0

If the number of terms in Equation 12, m, n, p, q, 7
and s are selected equally, size of stiffness matrix will
be 3n? by 3n%. Global elastic shear buckling strength
of a plate is then calculated by finding the solution of
eigenvalue Equation 17. This can be done by usual
eigenvalue extraction procedure. In the next section,
for convenience, we define dimensionless parameters of
elastically rotational springs in z- and y-directions by:

aky aky
Kz = Dmla and Ko = D:
bky1 bkya
= d ——¥Z

Ky D, and Ky D, (18)

4. Elastic constants estimation

In order to carry out an analysis developed in pre-
vious section, a corrugated plate must be transformed
into an equivalent homogeneous orthotropic thick plate
with appropriate structural properties. Elastic con-
stants required (see Equation 13) for this purpose are
flexural stiffness in two principal directions (D, Dy),
twisting stiffness (Dyy), plate stiffness (v, Dy + vy Dy)
and transverse shear stiffness in two principal directions
(KzhGazy KyhGy,). Definitions of dimensions of cor-
rugated plate are illustrated in Figure 5.

From here on, the direction of plate’s lower flexu-
ral stiffness is referred as z-direction and the direction
of plate’s higher flexural stiffness as y-direction (which
corresponds with that shown in Figure 6).

4.1. Flexural stiffness

Equivalent flexural stiffness in z-direction, D,, and
in y-direction, Dy, can be approximated by [1] [6]:

D = s 127 (19)
D, = —Eqi (20)

Moment of inertia in y-direction, I, in Equation 20,

can be calculated by the following equation:
hZ  but® b3,
= 2(b t + -‘I2—' + = 1 2

Plate stiffness (VwDy+vyDz +2Dgy)/2 in the analysis
is usually neglected [6]). However, in this study, only the
term involving D, was retained in the same manner
with Easley et al. [1]. The terms (v, Dy + vyD,) can
also be neglected when Dy, > D,, which is usually true
for corrugated plate [1].

In the code proposed by Research Group of Com-
posite Structure with Corrugated Steel Web [2] on the
section of global shear buckling strength, the equivalent
flexural stiffness are noted as below:

sin” 9). (21)

Et3
Ds = 12(1 —v2)’ (22)
s E(t2 + th?)
D, = -—— 1 2

Equation 19 estimates flexural stiffness of the plate
in the same way as a curved beam, while Equation 22
assumes the plate as a flat plate with no corrugation.
Flexural stiffness in y-direction is exactly estimated in
Equation 20 and approximately in Equation 23.

4.2. Twisting stiffness

Effective shear modulus of elasticity, G;?j in the equa-
tion must be considered regarding corrugate configura-
tion and attachment method.

For a corrugated plate attaches continuously to the
supports, deformation due to uniform in-plane shear
load is of uniform shear strain throughout the mate-
rial [7] [8]. In short, the shear modulus, G, of material
is equal to the ratio of uniform shear stress, F'/bt, and
shear strain in the corrugated plate is ug/s (Figure 6).
Here, s is a developed width of one corrugation, equals
to 2by,+2b;,,. However, for equivalent orthotropic plate,
the shear strain in the plate, ug/q. Thus, effective
shear modulus, G;g can be defined as G‘jg = Gq/s.
The equivalent twisting stiffness, D,, of corrugated
plate, after substituting the relation G = E/2(1 4 v) of
isotropic material, can be expressed as below:

s Et3

T Sy o

which is exactly the same as used by Easley et al. [1].

In the case of discrete attachment, the effective shear
modulus is lower than that given in Equation 24, de-
pending on the method of attachment (see [7], [8] for
examples).
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Figure 6: Corrugated plate under simple in—plane shear
force
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Figure 7: Transformed section of corrugated web for
transverse shear stiffness approximation

4.3. Transverse shear stiffness

In order to estimate the transverse shear stiffness in
y-direction, K, hG, ., one wavelength of corrugated web
is simply considered as a simple beam. Inclined strips
of cross section of corrugated web were made presum-
ably right angle to the remaining parts with the equiv-
alent cross section area, as shown in Figure 7. The for-
mula for estimating transverse shear correction factor
for thin-walled rectangular tube, which is mathemati-
cally equivalent to the transformed section, is as below

[9):
—_ Hl
- Hs +rv(Hs + Hy + Hs + Hg)'

K, (25)

where
Hy =10(1 4 3m)?,
Hy =12 4 72 m + 150m? 4 90m® + 30n% m(1 4+ m),
Hs = -2 + 3m + 15m2,
Hy = —n?(25m + 15m?),
Hs = —n?%(15m + 45m?),
Hg = —15m — 45m2,

_bety o bw G
hr tw’ he' E
tr =t t, =2t
) w hr

The thickness, h, in K, hG,, for this transverse shear
stiffness is replaced with the average thickness of cor-

rugated section:

s
tay = ~t.
q

Shear modulus, G, is simply shear modulus of the

plate, G. For the transverse shear stiffness factor in z-

direction, K hG,,, the average thickness of corrugated

section is used and shear correction factor, K, is taken
equal to 5/(6 — v) [10].

(26)

5. Calculation

Three different simple geometric shapes of corrugated
plate are studied. The wavelength of each corrugated
shape (g) is fixed at 125 mm. Equal panel width (b, =
biw) is considered. Only the degree of panel inclination
(9) is varied as 30, 37 and 45 degrees. The thickness
of the plates is taken equally to 2 mm constantly. The
relevant dimension parameters, as shown in Figure 5
are then derived based upon above criteria. Material
is assumed elastic with Young modulus of 2.06 x 10!
N/m?, and Poisson’s ratio of 0.30.

Calculations are made on 6 plates, comprise of all
three degrees of panel inclination with plate dimen-
sions (axb) of 1 m x 1 mand 2 m x 1 m. In each case,
only simple or fixed support edges in the z-direction are
considered. On the other hand, supported edges in y-
direction are considered to be restrained by elastically
rotational spring and their stiffness are varied equally
from 1.0 Nm/m to 10'® Nm/m to cover possible stiff-
ness of simple support to fixed support.

5.1. Rayleigh-Ritz analysis

Elastic constants necessary in Rayleigh-Ritz analysis
are estimated as described in previous section. Flexural
stiffness, D, and D, estimated by Equations 19 and 20
are denoted as elastic estimation formulas 1, and of
Equations 22 and 23 as elastic estimation formulas 2.
In every case, both two elastic estimation formulas are
utilized in Rayleigh-Ritz analysis. The dimension pa-
rameters and calculated elastic constants of the plates
are summarized in Table 1.

The number of terms in trigonometric series em-
ployed in calculation are 256 terms (16x16) in each
variable. This number is so selected to avoid compu-
tational error and not to overload the computer. It is
found that a calculation with maximum capacity of 400
terms (20x20) reveals a difference in results within 1%
compared to that calculated with 256 terms but need
computational time more than 4 times longer.

5.2. Finite element analysis

Finite element method is also used to compute the
buckling strengths of the plates. Figure 8 shows a typ-
ical model used in the finite element analysis. Ele-
ment used to model corrugated plate is 9-nodes shell
element, S9R5 available in ABAQUS, a finite element
analysis program. Four shell elements are used along
panel width, but 50 elements in perpendicular direc-
tion. Every nodes on the plate boundary are rotation-
ally restrained with respect to center line of the cor-
rugation to represent rotation of middle plane of the



Table 1: Parameters of corrugated plates in this study

Plate’s parammetirs degree of inclination

30 [ 37 | 45

q (mm) 125
s (mm) 133.97 | 138.99 | 146.45
h, (mm) 16.75 | 20.91 | 25.89
D, (10°Nm?/m)° | 1.2814 | 1.2351 | 1.1723
D, (10°'Nm?/m)® | 2.0715 | 3.3469 | 5.4000
D, (10°Nm?/m)® | 1.5092 | 1.5092 | 1.5092
D, (10°Nm?/m)® | 2.0936 | 3.3698 | 5.4241
Dy (103Nm?/m) | 2.2646 | 3.0543 | 3.2181
K 0.8772 | 0.8772 | 0.8772
K, 0.2644 | 0.3098 | 0.3463

Aelastic estimation formulas 1 (Equations 19 & 20)
belastic estimation formulas 2 (Equations 22 & 23)
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Figure 8: Finite element model of 1 m x 1 m plate
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Figure 9: Spring arrangement on finite element model

plate. This is achieved by connecting rigid beam ele-
ments, RB3D2 from the nodes to ideal nodes on the
center line as shown in Figure 9. Then, spring element
of type SPRINGI is used to restrain the ideal nodes to
ground. Also, all of the ideal nodes on each edge are
constrained to move in the center line connecting their
corresponding corner nodes.

5.3. Calculation results

The results of the calculation are shown in Figure 10
to Figure 15. Note here that, k, = 0 and k; = oo in
the figures denote to simple and fixed support edges in
z-direction, respectively.

Two horizontal lines in the figures denote estimated
buckling strengths calculated by the estimation formula
noted in Design Manual [2]. Upper and lower lines rep-
resent estimated buckling strengths of the plates with
fixed and simple support edges in y-direction, respec-
tively. This estimation formula is shown as follows:

{/D.D3
6 =368,
where 3 is set to either 1.0 or 1.9 for plate with simple

(27)
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Figure 10: Shear buckling strength of § = 30°, 1 m x
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Figure 11; Shear buckling strength of § = 30°, 2 m x
1 m plate
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Figure 12: Shear buckling strength of § = 37°, 1 m x
1 m plate

or fixed support edges in y-direction, respectively. Flex-
ural stiffness formulas according to Equation 22 and 23
(elastic estimation formulas 2) are used in the equation.

It is clear that this Rayleigh-Ritz analysis yield buck-
ling strengths in agreement with those calculated by
Equation 27, both for simple and fixed support edges.
However, they underestimate buckling strength com-
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Figure 13: Shear buckling strength of 8 = 37°, 2 m x
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Figure 14: Shear buckling strength of 8 = 45°, 1 m X
1 m plate
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Figure 15: Shear buckling strength of 8 = 45°, 2 m x
1 m plate

paring to result of finite element analysis.

‘From the figures, buckling strengths estimated by fi-
nite element analysis are higher than buckling strength
predicted by Rayleigh-Ritz analysis for the equivalent
orthotropic plate. The difference in buckling strength
increases as a parameter § increases (so reduces degree
of the angle measuring between adjacent panels). It is

thought that deformation in each panel of corrugated
plate is somewhat constrained by adjacent panels and
this helps stiffening the panels to some extent.

Then, it requires a modification to the estimation
method, for example in Equation 27, to compensate for
this difference. The equation can be simply modified as

below:
,“/D,CD!?;
Pci,G = 360k, ———

- (28)

where k. is a correcting function for buckling strength

which takes into account of other parameters of cor-
rugated geometry including angle of inclination of the
corrugation, 6.

For plates with high aspect ratio (i.e. 2 m x 1 m),
both finite element analysis and Rayleigh-Ritz analysis
yield buckling strengths lower than plates with low as-
pect ratio (i.e. 1lm x 1 m). This is exact with what
was expected from elementary shear buckling analysis
of plate.

5.4. Effect of rotational restrain

Regardless of this difference in buckling strengths,
similarity of graph shapes between this Rayleigh-Ritz
analysis results and finite element analysis results is
found in every figure. That means the contribution of
rotational restraint on the edges to buckling strength
of the corrugated plates can be solely explained by this
Rayleigh-Ritz analysis.

As can be seen in the figures, increasing of stiffness
of rotational restrain on the edges in y-direction obvi-
ously shifts buckling strength of the plates from those
of simple support edge to fixed support edge. On the
other hand, for a given rotational restraint stiffness in y-
direction, no significant difference in buckling strength
is found between simple and fixed support edges in z-
direction. It is concluded here that support edges in the
direction of plate’s lower flexural stiffness (z-direction)
can be neglected in estimation of buckling strength of
corrugated plates.

Regarding to the elastic estimation formulas ex-
ploited in this Rayleigh-Ritz analysis, both yield buck-
ling strengths close to each other, and they clearly re-
veal the shifting of buckling strength. However, elastic
estimating formulas 2 yield buckling strengths higher
than formulas 1.

When rotational spring constant in y-direction is
made dimensionless by Equation 18, it is found that
there is a specific transition zone of buckling strength
from that of simple support edge to fixed support edge.
The relation can be seen in Figure 16 in which each
shear buckling strength plot derived by finite element
method is comparatively normalized to a range of zero
to one. The z-axis of each plot is made dimensionless,
however by elastic estimation formula 2. It is clear that
the transition zone spans over only a specific range for
every plate, regardless of corrugated shapes, and dimen-
sions. The dimensionless rotational spring constant of
about 1072 is found as a lower bound or simply support
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Figure 16: Normalized buckling strength plots (only
finite element analysis results)

Figure 17: Buckling shape of 2 m x 1 m plate

bound. For upper bound or fixed support bound, the
dimensionless value is about 10%.

Figure 17 shows a typical buckling shape of a
2 m x 1 m plate obtained from finite element analy-
sis.

6. Conclusion

This Rayleigh-Ritz analysis reveals the influence of
rotational restraint on global elastic buckling strength
of corrugated plates. The formula for the estimation
of the global elastic shear buckling strength adpted in
design manual yields values consistent to the results of
this Rayleigh-Ritz analysis. However, this study is ex-
tended to cover the boundary condition not only simply
or fixed supported, but elastically rotational restrained.

Influence of elastically rotational restraint is investi-
gated and it is found that type of support edge in the
direction of plate’s lower flexural stiffness, either simple
or fixed support has little effect on buckling strength.
On the other hand, buckling strength depends greatly
on the magnitude of rotational restraint in the direc-
tion of plate’s higher flexural stiffness. Also found is
that there is a specific range of dimensionless rotational
spring constant in the direction of plate’s higher flexu-
ral stiffness that causes buckling strength to vary from
that of simple support to fixed support. This range
is approximately about 1072 to 10%. It is independent
of corrugated shape or dimensions of the plate. If this
rotational restraint can be measured, it can be used to
ensure the strength of the corrugated plates whether do
they meet with criteria at the design time or not

Nevertheless, both the Rayleigh-Ritz analysis and es-
timation formula noted in design manual yield buckling
strengths lower than those obtained from finite element
analysis. One way of improving the prediction was

suggested in the text by utilizing a correcting function
that takes into account the corrugated geometry of the
plates such as the variation of the neutral plane of the
plates. Another is to consider the actual corrugated
geometry in the analysis, which is mathematically very
difficult and it requires further extensive researches on
this subject.

Although, the accurate estimation on global elastic
shear buckling strength of corrugated plate is still re-
quired, this Rayleigh-Ritz and the estimating formula
noted in design manual give a buckling strength in a
conservative side and it may be safe to use in design.

There remain many points requiring further research
in area of analysis of shear buckling strength of cor-
rugated plate. One is to extend the scope of buck-
ling analysis to include elastoplastic buckling. Another
point expected to be carried out in the future is to per-
form experiments to check with the analysis which help
confirming theoretical analysis and in developing cor-
recting function. Also, further study is needed on how
to evaluate rotational stiffness of boundary edge.
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