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Fast Multipole Method (FMM) has been developed as a technique to reduce the com-
putational cost and memory requirements in solving large scale problems. This paper
discusses an application of the new FMM to three-dimensional boundary integral equa-
tion method (BIEM) for elastostatic crack problems. The boundary integral equation
is discretised with collocation method. The resulting algebraic equation is solved with
Generalised Minimum RESidual method (GMRES). The numerical results show that the
new FMM is more efficient than the original FMM.
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1. Introduction

In spite of the advantage of reduction of dimen-
sionality BIEM has been applied to relatively small
problems so far, because the resulting matrix is dense.
Indeed, this property leads to a serious exhaustion of
the memory of a computer, since the memory require-
ment of BIEM is O(N?), where N is the number of
unknowns. When one attempts to solve matrix equa-
tions with direct methods such as Crout’s method,
Gaussian elimination, etc. the required computational
cost increases to O(N3). But the appearance of FMM
changed the circumstances drastically. FMM reduces
the computational cost to O(N'+%*(log N)#) and the
memory requirements to O(N), where a and § are
nonnegative numbers. With the help of FMM, BIEM
can be applied to large scale problems.

FMM was initially investigated by Rokhlin? as
a fast solver for integral equations for the two-
dimensional Laplace equation, and then was applied
to multibody problems with Coulombic potential by
Greengard?. Since then FMM has been developed
as a fast solution method for large scale problems.
An application of FMM to BIEM has been investi-
gated by several authors: e.g., by Nishimura et al.?
for crack problems for the three-dimensional Laplace
equation, by Fu et al.¥), Fukui et al.®) and Takahashi
et al.9 for ordinary problems for three-dimensional
elastostatics, by Yoshida et al.”8) for crack problems
in three-dimensional elastostatics and by Fujiwara?
and by Yoshida et al.19 for three-dimensional elasto-

FMM, the new FMM, Crack, BIEM, GMRES

dynamics.

In FMM the computational cost for the M2L
translation dominates the performance especially in
three-dimensional problems or problems dealing with
the Helmholtz equation. In view of this Rokhlin in-
troduced the diagonal form!Y12) so as to reduce
the computational cost for the M2L translation.
Recently the number of researches using diagonal
forms is increasing. The use of the diagonal form
has been investigated by several authors: Koc and
Chew'®, Epton and Dembart'®, for example. How-
ever, the diagonal form proposed by Rokhlin is known
to have numerical instabilities in dealing with the
Laplace equation'® or low frequency problems for
the Helmholtz equation!®. In order to overcome
these problems Hrycak and Rokhlin!? proposed a
new FMM for the two-dimensional Laplace equation,
Greengard and Rokhlin'® and Cheng et al.l9 for
the three-dimensional Laplace equation, and Green-
gard et al20) for the three-dimensional Helmholtz
equation. Nishimura et al.?2) applied the new FMM
to crack problems for the two-dimensional Laplace
equation. An application of the new FMM to three-
dimensional elastostatics is mentioned in Fu et al.2?
but they present only an integral representation for
the fundamental solution of anisotropic elastostatics
without FMM formulation or numerical examples. In
this paper we discuss an application of the new FMM
to three dimensional elastostatic crack problems. The
results show that the new FMM is more efficient than
the original FMM.
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2. Formulation for integral equation

Let S C R3, or a ‘crack’, be a union of smooth non-
self-intersecting curved surfaces having smooth edges
8S. Also let n be the unit normal vector to S. Our
problem is to find a solution « of the equation of elas-
tostatics

Cijkitgi; =0 in R3 \§
subject to the boundary condition
t;b = ijklui.:)lnj =0 onS (1)
regularity
P(x) = u'(z)

and an asymptotic condition given by

~u (x)=0 onds 2)

u(x) - u™(x) as |x| — o0

where u, Cijii, t, u™ and ¢ stand for the displace-
ment, elasticity tensor, traction vector, a solution of
the equation of elastostatics in the whole space and
the crack opening displacement, respectively. Also,
the superscript + (—) indicates the limit on S from
the positive (negative) side of S where the positive
side indicates the one into which the unit normal vec-
tor n points. The components of C;;x; are expressed
with Lamé’s constants A, ¢ and Kronecker’s delta §;;
as

Cijkt = A0y + pu(0ikdj1 + 0udjk).

The solution u to this problem has an integral rep-
resentation given by

ui(x) = u®(x)
/ Ccdgl ZJ (33 y)nc(y)¢d(y)ds
z€R3\3 (3)

where I';;(x — y) is the fundamental solution of the
equation of elastostatics expressed as

Lij(x —y) =
1 a 0
s (%

8—:161 Bxl
Using (1) and (3), one obtains the following hyper-
singular integral equation:

too(x) =
’ o 0
—pf. e Ty —
p Lnb(m)cabzk B aylF](m y)
Ceajine(y)pa(y)dSy, = €S (5)

where t*°(x) and p.f. indicate the traction associated
with u°°(z) and the finite part of a divergent integral.

A+p 8 D
X+ 2u01; axj)l"’"y’ “)

Eq.(5) can also be written as

to(x) =
8
v:p. | (@) CabiererCedi5—Tis (@ — y)
s Yi
0
o2 yas, @)
q

where v.p. indicates Cauchy’s principal value. In this
paper we use (6) for the direct computation of (5).

3. Original FMM

In this section we present the formulation and al-
gorithm for the original FMM to show differences
between the original FMM and the new FMM.(See
Yoshida et al.” for further details)

3.1 Formulation for original FMM

In the application of FMM to BIEM our starting
point is to expand the fundamental solution I';; (x —y)
into a series of products of functions of & and those
of y. From the expression of (4) one finds that it is

" necessary to expand |x — y| into a series. Yoshida et

al.”) obtained an expansion for |z — y| as follows:
lz -yl =

>3

n=0m=-—n

_ |0Z[*Sn,m(0%) Rr.m(Oy)
2n -1

Sn,m( Ow)loyl R, m(Oy)
2n+3

(10z| > |Og}) (7)

where R, ,, and S, . are solid harmonic functions
defined as

1 )
Rn’m(az) = mpgz(cos 9)elm¢’r'n,
Sp.m(0F) = (n — m)! P (cos §)e'™? ,,n1+1 ,

(r, 8, $) are the polar coordinates of the point =, P
is the associated Legendre function and a superposed
bar indicates the complex conjugate. The use of solid
harmonics in FMM has been suggested by Pérez-
Jords and Yang??. The functions R, and S, m,
satisfy the following relations given by

Sn,m(ﬁ) =
00 n’ — .
Z Z R m (OY)Snns imsm (Oz)
n'=0m'=—n'
(109] < [O=)) (8)
Rn m('yz) =
Z Z Ry m’ )Rn n',m—m/ (O:L')
n'=0m/=-—n’ v
(This holds for arbitrary Oz and Oy) 9)
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Using (7), one rewrites (4) as”

Lij (-’L' = y)

- 5 3 (Fm(03)Fari0B)

n=0m=-n

+ G (0D (09); Fam(0))  (10)

and G2 are functions defined as”

,n,m

where FS

ij,n,m

FZ (O:L')

ij,n,m

Sn m(Oa:)

(11)
A+ 15] —
/\+2u6_xi5"’m(0x) (12)

—

Ginm(O) =

We now compute the integral on the right hand side
of (5) over a subset of S denoted by S, for z which is
away from S,. Using (10) we obtain

0 0
—p.f./ %%Fﬁ(w

— Y)Ceqjinc(y)da(y)dS

=3 Y (OB, 0)
n=0 m=-n
J s —

+ 52— G (O%) M2 1 0) (13)
where M}n m 80d M2 are the multipole moments
centred at O, expressed as

Mjl,n,m(o) =
0
[ CatigRam@Dbalwncv)ds,, (14
Sy i
M ,(0) =
0
/SC'cdjz8—yl((@)jRn,m(@))¢d(y)nc(y)d5y~

(15)

The multipole moments are translated according to
the following formulae as the centre of multipole ex-
pansion is shifted from O to O’:

Mjl,n m (O/) =

Z Z R"/m'(oo Jn n’,m— m(O)

n'=0m'=—n’

(16)
Mz,m(ol) =
n '
> Y Ram(OO) (M2 (0)
n'=0m/=—n’
"(O_)O')]'Mjl,n—n’,m—m’ (O)) (17)

where we have used (9), (14) and (15). In the evalu-
ation of the integral on the right hand side of (5) one

can use not only the multipole moments but also the
coefficients of local expansion in the following manner:

0

_p.f. Sy a—xka—l—‘ij(tc——y) cd]l'nc( )¢d(y)
0
+_al-_kan,m(M)erz,m($0)> (18)

where L} ,, ,, and L2
M2 by

are expressed with M}, ., and

L] n’,m’( 0) =

P

n=0m=-—n

n+n' m+m’(om0) g n, m(O) v

(19)
erz’ m’ (CC()) =
Z Z n+n 7m+m/ (OwO)
n=0m=-n
and Ff, . and GE, . are functions obtained by re-

placing Sp,m by Rnm in (11) and (12). In these for-
mulae we have used (8) and have assumed that the
inequality |0m0| > |Zo@| holds. The procedures given
by (19) and (20) are called M2L translation.

The coefficients of the local expansion are trans-
lated according to the following formulae when the
centre of the local expansion is shifted from x¢ to x;

L;’nu,m// (IL'1) =

) n
> Y Runt (TG L e (@0)

n'=n"" m'=—n’
(21)
n// m’’ :131 Z Z R f'—n’’ m’—m” (woml)
n=n"" m'=-—n'
X (Li/’m, ((Eo) — (wOwl)pL},,n/,m/ (:l:())) (22)

where we have used (9) and (18).

3.2 Algorithm for original FMM
The algorithm of the original FMM is described as
follows:

Step 1. Discretisation:

Discretise S in the same manner as in the con-
ventional BIEM. ,

Step 2. Determination of octtree structure:
Consider a cube which circumscribes S and call
this cube the cell of level 0. Now take a cell (a
parent cell) of level | (I > 0) and divide it into 8
equal sub cubes whose edge length is half of that
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of the parent cell and call any of them which con-
tains some boundary elements a cell of level [ 4-1.
Continue the subdivision of cells until the num-
ber of boundary elements in the cell is below a
given number. A cell having no children is called
a leaf.

Step 3. Computation of the multipole moments:
First compute the multipole moments associated
with leaves via (14) and (15) taking the centre
(O) of the multipole moment as the centroid of
C. Now consider a non-leaf cell C of level I. We
compute the multipole moments associated with
C by translating the multipole moments of C’s
children via (16) and (17) with the origin shifted
from the centroids of C’s children (O) to that of
C (O’) and adding all the translated multipole
moments of C’s children. We repeat this proce-
dure tracing the tree structure of cells upward
(decreasing !) until we reach level 2 cells.

Step 4. Computation of the local expansion:
We have to prepare some definitions first. We say
that two cells are ‘adjacent cells at level [’ if these
cells are both of the level [ and share at least one
vertex. Two cells are said to be ‘well-separated
at level I’ if they are not adjacent at level | but
their parent cells are adjacent at level [ — 1. The
list of all the well-separated cells from a level !
cell C is called the interaction list of C.

Now we compute the local expansion associated
with a cell C. The local expansion associated
with C represents a sum of the contribution due
to boundary elements in cells of the interaction
list of C' and the contribution due to all bound-
ary elements in cells which are not adjacent to
C’s parent. The former is computed by sub-
stituting the multipole moments associated with
cells of the interaction list of C to (19) and (20)
and the latter by translating the local expansion
associated with C’s parent via (21) and (22) as
the centre of the local expansion is shifted from
the certroid of C’s parent (xp) to the centroid
of C (x1). The sum of these contributions gives
the local expansion associated with C. We re-
peat these procedures starting from ! = 2 and in-
creasing [ along the tree structure until we reach
leaves. When | = 2, the coefficients of the lo-
cal expansion are computed only by using (19)
and (20). This is because cells of level 1 have no
well-separated cells.

Step 5. Evaluation of the integral in (5):

We now compute the integral in (5) at leaves (de-
noted by C). First we compute the contribution
from boundary elements in cells adjacent to C' us-
ing (6) in the same manner as in the conventional
BIEM and then compute the contribution from
cells which are not adjacent to C using (18). The
sum of these contributions describes the contri-

bution from all boundary elements.

4. New FMM

In this section we present the formulation and al-
gorithm for the new FMM.

4.1 Formulation for the new FMM

Now we consider a source point y located at
(y1,¥2,y3) and a target point x at (z1,zz,z3) and
denote a cell including a source point by C; and a cell
including a target point by C;. Here we introduce the
following integral representation:

1
VT —y1)2 + (z2 — y2)% + (73 — y3)2
1 o0
— e—/\(xs—ys)
2w Jo

2
/ Trei)\((x1—y1)cosa+(zz—y2)sina)dad)\ (23)
0

The integral in (23) converges under an assumption
that the inequality z3 > ys is valid. This is why we
restrict the discussion to the case where C; is located
in +z3 direction of C; for the present. Suppose that
each of the cells Cs and C; has a volume of d3. Then
the double integral in (23) is evaluated with the fol-
lowing double sum:

1

V@ —y1)2+ (@2 —92)2 + (23— 43)%

s(e) M (k)

Z Z —()\k/d)(zs—ya)

k=1 j=1

ez(/\k/d)((xl—yl)coso:j(k)-',—(mz—yz) sin o (k)) +¢,

(3 > y3) (24)
where a;(k) is given by
27j
(k) =

¢ is the error term and the numbers s(g), M (k), Gaus-
sian weights wy and nodes A; are given in Yarvin
and Rokhlin®®. One may determine these parame-
ters considering the required accuracy.

Noting the following formulae:

5.n(08) = (-1 (1) (m>0),

Sp,—m(0T) = (=1)*tmEmor—m (1> (m > 0),

r
0 0
== +i—
O <8x 16y>
and (24), one can evaluate the integral in (5) in the
following manner:

a a
p.f./s &za—ylr‘ij(w“y)ccdjlnc(y)¢d(y)ds
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s{e) M(p)

~ 8 Z Z (fk”(O:z:

p=1 g=
e—(/\p/d)(Ow)3+1(>\p/d)((©7c’)1 cos oy (p) +(O®)2 sin ag (p))

1(p, q) + Gri(OZ)W(p, q))

where W} (p,q) and W?(p,q) are the coefficients of
the exponential expansion at O, defined as

W}(p,q) =

> -

m -—1maq(P) Z )\ /d nM]l,n,m(O)

p)d e Bt
(25)
W2(p,q) =
wP m —zmaq n 2
2 3 (e S (0 0 M (O
m=-00 n=|m|
(26)
and F, G are operators defined as
A+3u 8 Ad+p. 0 —, 0
Frii(Ox AR .
kig(0) = )\+2,u8xk 4 )\+2u8xk( m)]Ba:,-
A A+pu 0 9
Gri(Oz) = A+ 2u Oz, Ox;

These formulae (25) and (26) convert the multipole
moments into the coefficients of the exponential ex-
pansion. The coefficients of the exponential expansion
is translated according to the following formulae when
the centre of the exponential expansion is shifted from
O to xy:

Vi(p,q) = W}(p,q)
o= O /D) (D)3 +i(hp /) (D)1 co8 crg (9)+(O3) sim vy ()
(27)
V2(p,q) = (W3(p, q) — (Om0)s Wi (p,q))

e~ (Ap/d)(0%3)3+i(Ap/d) ((0%0)1 cos arq(p)+(D3)2 sin ag (p))
(28)

where V;!(p, q) and V3(p, q) are the coefficients of the
exponential expansion at g and (x); stand for the
components of the vector x.

We next need to convert the coefficients of the ex-
ponential expansion into the coefficients of the local
expansion. Noting that the integral in (13) is evalu-
ated with V;!(p, ¢) and V2(p, q) as follows:

J 0
pf / 3o 5D (@~ Y)Cagine(¥)da(w)dS,

1 dEIMb)

= Y (Fu@@)Vie

*(p,q))
p—l g=1

e~ (Ap/d)(@5B)3+i(Ap/d)((Z52)1 cos g (p)+(ToR)z sin aq(p))

) + gkz(ﬁ)

and using (18) and the following formula:

n

3 (—iymemim®) R, . (0%) =

m=—-n

((O2)s — i(Ox); cos a; (k) — i(OF )2 sin o (k))™
n!

one obtains the following formulae which converts the
coefficients of the exponential expansion into the co-
efficient of the local expansion:

L} o, m(%0) =

j,n,m

s(e) M(p)

2D Vil

p=1 ¢g=1

)™ (=Xp/d)e —imag(p)

(29)
L, (o) =

s 6) M(p)

> Vi)

p=1 ¢=1

( )\ /d)n —imoy (p)

(30)

The procedures in (25)—(30) correspond to the M2L
translation expressed by (19) and (20) for the original
FMM. Suppose that one truncates the infinite series
in (10) taking p terms. Then the computational costs
for (19) and (20) are obviously O(p?). -Also, if one
assumes

s(e)

> M(k)
k=1

the computational costs for (25) and (26), (27) and
(28) and (29) and (30) are O(p®), O(p?) and O(p?),
respectively. Hence, the total cost for the procedures
in (25)—(30) is O(p®). This is why the new FMM is
faster than the original FMM.

s(e) ~ p,

4.2 Rotation of coefficients

The discussion in the previous section has been re-
stricted to the case where C; is in 4z3 direction of
C,. In this section we shall remove this assumption
to generalise the discussion. We divide the interac-
tion list of C; into 6 lists: uplist, downlist, northlist,
southlist, eastlist and westlist. The uplist and down-
list contain target cells located in +x3 and —z3 direc-
tions of C;, respectively. The northlist and southlist
contain target cells located in +z2 and —x3 directions
of C; except those in the uplist or downlist, respec-
tively. The eastlist and westlist contain target cells
located in +z1 and —z; directions of C; except those
in the uplist, downlist, northlist or southlist, respec-
tively. The situation in the previous section can be
described as the case where C; is contained in the
uplist of C,. If the target cell is included in lists ex-
cept the uplist of C; we rotate the coordinate system
so that the target cell is in the positive 3 direction
viewed from the source cell, where Z; denotes the new
axis. In general the multipole moments in the new
coordinate system are obtained as follows:

] n, m(O) ‘Aﬂ Z Rn m,m’ (V a)len m’ (O)

mi=—n
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(31)

n
Mr%,m(o) = Z Rn,m,m’(y’ a)Mrzz,m’(O)

m'=—n

(32)

where Ry m m (v, &) is the coeflicient of rotation, v is
a unit vector parallel to the rotation axis, « is a rota-
tion angle and A;; is a rotation matrix. The explicit
form of Ry, m m (v, &) is given by (See Biedenharn and
Louck?®)

R (0, @) = (=1)™™ (0 +m/)(n — m)!

> [(aﬂ — i0g)" ™R (—iay — ag)™ TR
k

(—iay + ag)*(ag + iag)"‘m/_k] [(n+m-—k)!
(m' —m+k)ki(n —m' — k)" (33)

where o = cos{@/2) and o; = —v;sin(e/2). The
summation in (33) is carried out over such &k that the
powers in the numerator are all non-negative.
We next describe the generalised M2L translation
process in the new FMM.
1. Rotation:
First we rotate the multipole moments via (31)
and (32) so as to make the procedure presented in
4.1 applicable. The specific forms of (31) and (32)
depend on the location of C; and are described
as follows:
o (€ uplist

MY ,.(0) = AUM], .(0)  (34)

MY (0) = M2,(0) (35)
e (C; € downlist
Af1D _
Mj,n,m(o) -
AL D" Romme(e1, MM}, 1 (0)
(36)
M2 (0) =
n
Z 7?'n,m,m’ (elvﬂ')MZ,m’(O)
(37)

e C; € northlist
J\Afjlﬁfm(O) =

AN D" R (€1, 7/2) M, e (O)

(38)
MAT(0) =
7?'n,m,m’ (ely 7r/2)M12L,m’ (0)
m'=-n
(39)
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e C; € southlist
M5 (0) =

Jn,m

'A;S; Z Rﬂ,m’m'(ela-W/Q)Mil,n,m’(o)

m/=-n
(40)
M;5,(0) =
Z Rn,m,m’ (ela _W/Z)Mg,m’ (O)

m'=—n

(41)
o (, € eastlist

M}7n(0) =

]1n?

A Y Romme(e2, =7/2) M}y i (O)

(42)
M%(0) =
> Rumm (€2, —1/2)MZ2,..(0)
(43)
o C; € westlist
Mjl,nw,m(o) =
Aﬁ/ Z R mm (e2a7r/2)Mil,n,m'(o)
(44)
M7(0) =
Z Rn,m,m’ (627 W/z)Mz,m’(O)
m'=-n
(45)

where e; is the base vector for the Cartesian coor-
dinates and superposed indices {U, D, N, S, E,
W} correspond to the initial letters of {uplist,
downlist, northlist, southlist, eastlist, westlist},
respectively.

. Compute the coefficients of the exponential ex-

pansion:
Compute the coefficients of the exponential ex-
pansion via (25) and (26) as follows:

W} (p,q) =

(e ]

Ma();)d Z (—i)me—imaq(P) Z (/\p/d)”J\Z{%m(O)

m=—o0 n=|m|

(46)
W2 (p,q)

e § comemnn £ 000

m=—o0 n=jm|

i

(47)



where $ is an element of {U, D, N, S,E, W} .

. Translation of the coefficients of the exponential
expansion:

As the centre of the exponential expansion is
shifted from the centroid of Cs (O) to the cen-
troid of C; (@), the coefficients of the exponen-
tial expansion is translated according to (27) and
(28) as follows:

V;¢(p,q) = W;%(p,q)
= (A /d)(00)a+i(xs/d)((Oo)1 cos aq (p)+(OTa )2 sin g (p))
(48)
V2(p,q) = (W (p,q) = Wi (p, q)(Ozo)x)
= (p/D)(00)s+i(Ap/d)((Om0)1 c05 6y (p)+(O0)2 sin g ()
(49)
o —
(Omo): = A5 (Oo);
where ¢ is an element of {U, D, N, S, E, W}.
. Compute the coeflicients of the local expansion:
Compute the coefficients of the local expansion

from the exponential expansion according to (29)
and (30) as follows:

L}§, m(@o) =

JYn
s(e) M(p)

>3 Voo

p=1 ¢q=1

Ap /d)ne—imaq (»)

(50)
L2<> ((Eo) =
s(e) M(p)

2.2 V¥

p=1 ¢=1

( A /d)n —imog (p)

(51)

where ¢ is an element of {U,D,N,S,E,W}.
Then rotate L,?’m as follows:
e C} € uplist

L;frjl m(w ) Az] Lzlg m(wo) (52)

n,m(mo) L2U (il«'()) (53)
e C; € downlist
L;,ﬁ m(:EO) =
Z Rn,m’,m(elv W)E},Q,m’ (Il!())
(54)
L2D (150)
Z Rn m’ m(el’ ) nm’(wo)
m'=-n
(55)

e C; € northlist

L;,Ir\{ m(:EO) =
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Z Rn m',m 61,71'/2) znm’(wo)

e (56)
L2N ( 0)
Z R’n m/,m(elaﬂ./z)Ln m’( )
e (57)

o (C; € southlist

L;i m(wo) =

Z Rn,m’,‘m €1, —7['/2) RN m’(wo)

m/=-n
(58)
L?z?m($0) =
n o~
Z Rn,m’,m(ela _ﬂ/z)Li?m’ (mO)
=—mn
(59)
o C; € eastlist
lefz m(wo) =

Z Rn,m’,m €2, —71’/2) i,n, m’(xo)

(60)
erz,Em(wO) =
Z Rn,m’,m(e% _71./2)2’3{3"1’ ((L'())
m/=—n
(61)
o C; € westlist
L;‘:‘L/m(wo) =
Z Rn m/,m 62, 7T/2) i,n, m’(mo)
(62)
L2W (wO)
Z Rn,m’,m(e% 7[-/2)zrzzl,/}/n’(mo)
(63)

Finally add LY, LP, LN, L%, LE and LY to-
gether

LJI',n,m(wO) = Z Lgl?z m{Zo)
O€U,D,N,S,E.W

L’?L,m(mo) = Z

¢€U,D,N,5,E,W

(64)
L2, (zo)
(65)

to obtain the coefficients of the local expan-
sion.



4.3 Algorithm for the new FMM

The algorithm for the new FMM is given as follows:
Steps 1-3. Same as the steps 1-3 in 3.2.
Step 4. Computation of the coefficients of the
exponential expansion:
Compute the coefficients of the exponential ex-
pansion at each cell using (34)—(47), taking the
origin (O) at the centroid of the cell.
Step 5. Computation of the coefficients of the
local expansion:
We compute the coefficients of the local expan-
sion of cells of level [, starting from [ = 2 and
increasing {. Now we consider cell C' and cell C’
which is contained in the interaction list of C.
Considering the position of C’ relative to C, we
translate the coefficients of the exponential ex-
pansion via (48) and (49) as the centre of the ex-
ponential expansion is shifted from the centroid
of C (O) to that of C' (x) and then use appro-
priate formulae in (50)-(63) to convert the coef-
ficients of the exponential expansion to the co-
efficients of the local expansion. After carrying
out these conversions about all cells in the inter-
action list of C, we add them together via (64)
and (65) to obtain the contribution from the in-
teraction list of C to the coefficients of the local
expansion. To these contributions we add the co-
efficients of the local expansion of the parent of
C with the origin shifted from the centroid of the
parent (xp) to that of C (x1) via (21) and (22)
to obtain the coefficients of the local expansion
associated with C.
Step 6. Same as the 5th step in 3.2.

5. Numerical Examples

The proposed techniques have been implemented
in Fortran 77 and have been tested on a computer
having a DEC Alpha 21264(500 MHz) as the CPU.
The integrals in the multipole moments in (14) and
(15) are computed numerically with Gaussian quadra-
ture. The sums in the finite series (13) and (18) are
truncated at 10 terms and the series in (46), (47),
(50) and (51) are computed with the 109 point gen-
eralised Gaussian quadrature formula in Yarvin and
Rokhlin?®. The maximum number of boundary ele-
ments in a leaf is set to be 100. To solve the resulting
matrix equation we use the preconditioned GMRES
and adopt the block diagonal matrix corresponding to
the leaves as the preconditioner according to Nishida
and Hayami?®. In GMRES the iteration is stopped
when the relative residual norm is below 1075,

5.1 One crack

In the beginning we consider an infinite space which
contains a penny-shaped crack having the radius of
ap and the unit normal vector of n = (0,0,1). The

function t*®(zx) is given by t*(z) = o> (z)n(zx)
where o33 = py and g;; = 0 (otherwise) and, hence,
t>* = (0,0,po). This asymptotic condition indicates
that the domain is subjected to a uniform uniaxial
tension. Also, Poisson’s ratio is set to be 0.25; i.e.
A = u. This problem is solved with the conventional
BIEM, the original FM-BIEM (Fast Multipole-BIEM)
and the new FM-BIEM. The numerical results ob-
tained with the original FM-BIEM and the new FM-
BIEM should be identical with those obtained with
the conventional BIEM if calculations were carried
out without errors caused by truncations of the in-
finite series. Fig.1 shows the 5736 DOF mesh and
Fig.2 plots the non-dimensional crack opening dis-
placement pu¢s3/aope obtained with this mesh. In
Fig.2 the symbols marked ‘conv’, ‘fmm’ and ‘newfmm’
indicate numerical results computed with the con-
ventional BIEM, the original FM-BIEM and the new
FM-BIEM, respectively. Fig.2 shows good agreement
in numerical results. Fig.3 plots the total CPU time
(sec) vs the number of unknowns. In Fig.3 the lines
marked ‘T'dir’, ‘Tfmm’ and ‘Tfmmnew’ indicate the
CPU time required with the conventional BIEM, the
original FM-BIEM and the new FM-BIEM, respec-
tively. This figure shows that the new FM-BIEM
is only slightly faster than the original FM-BIEM.
This is because this example is essentially a two-
dimensional one where the computational cost for the
M2L translation is not dominant. In order to show
the efficiency of the new FMM more clearly we need to
consider an example where boundary elements are dis-
tributed three-dimensionally. Therefore we consider
many crack problems in the next example.

5.2 Many cracks

We now consider an infinite space which contains
an array of penny-shaped cracks, each having the
same radius ag, subjected to the same asymptotic
condition as in the previous example. The centroids
of these cracks are located at the same interval of
4ag in each coordinate direction, but the direction of
each crack is taken random. First, we consider an
array of 12 x 12 x 12(= 1728) penny-shaped cracks
(total DOF=1,285,632) in the infinite domain. Fig.4
plots the non-dimensional crack opening displacement
(udp/agpo) on the non-dimensional mesh x/aq. Notice
that the originally flat cracks appear curved since the
crack opening displacements have been superposed.
The required CPU times with FM-BIEM and the
new FM-BIEM are 13,954 (sec) and 8,290(sec), respec-
tively. In this example the error defined as error =
[l — &)l/]|#|] is 9.09 x 1074, where ¢ is the numeri-
cal solution obtained with the new FM-BIEM, ¢ the
one obtained with the original FM-BIEM and || - ||
denotes the Lo-norm. Next we consider an array of
8 x 8 x 8(= 512) penny-shaped cracks in the infinite
domain. Fig.5 plots the total CPU time (sec) required
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by the original FM-BIEM and the new FM-BIEM

with this array. In Fig.5 the lines marked ‘Tfmm’ and 10000 S T 2 e 2 S8 70 =
‘Tfmmnew’ indicate the CPU times required with the ' SEE Wi e
original FM-BIEM and the new FM-BIEM, respec- . ‘
tively. These results show that the new FM-BIEM is 1000 | PaEen
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6. Conclusions

o In this paper we have succeeded in an application
of the new FMM to the three-dimensional elas-
tostatic crack problems and showed that the new
FMM is faster than the original FMM in sample
problems.

¢ We plan to use singular elements to consider the
behaviour of ¢ near the crack tip and compute
the stress field with FMM using techniques pro-
posed in Yoshida et. al®.

e The proposed techniques can be extended to the
Galerkin BIEM which yields highly accurate nu-
merical results for crack problems®). Also, the
new FMM for the three-dimensional Helmholtz
equation proposed in Greengard et al.2? can be
extended to three-dimensional elastodynamics in
the frequency domain.
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