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In this paper we develop two algorithms for identifying the member constitutive parameters of a structure
with determined geometry and topology from static test data. The proposed algorithms are based on the

concept of minimizing an index of discrepancy between the analytical model and the real structure, the first

one using the errors in displacements at the measurement sites and the second one using the error in nodal

forces. The mathematical model is set up as a nonlinear least-squares minimization and is solved with Gauss-
Newton method. By using Monte Carlo method, the effectiveness and stability of two algorithms are
investigated in detail when the measured data are polluted by noise. The first algorithm is distinguished by
that the sensitivity matrix is not affected by the measurement error of displacements. The identified

constitutive parameters are at the element level, and a statistical approach by a hypothesis test is introduced

to locate and assess damage of elements. Numerically simulated examples are presented to demonstrate the

validity and accuracy of the SI-based damage assessment algorithm.
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1. Introduction

Damage due to an extreme event is possible in a structure
at some time during its design life. A well-designed structure
may survive a-damaging event, but its function could
decreases greatly, and then its safety cannot be guaranteed.
Damage assessment methods based on system identification
(SI) techniques have been investigated to detect damage in
structural systems during the last decade (Sanayei and
Onipede”, Hajela and Soeiro”; Hjelmstad and Shin(1997) ¥,
Yeo. and Shin'®. A SI-based damage assessment algorithm
consists of two parts, (1) system identification; (2) damage
assessnient. First, the constitutive properties of given
structure are estimated by a SI algorithm, and then damage of
a structure is located by comparing changes of those
properties of the structure. Therefore, a stable SI algorithm is
essential for a reliable damage assessment. It will be
reasonable to say that SI lays an important foundation for the
establishment of theory of maintenance.

Considerable researches have been performed in the area

of parameter estimation and are divided into two major
categories: dynamic and static according to the properties of
the measured test data. The intent of parameter estimation is
to adjust the parameter of the analytical finite element model
(FEM) to match the real structure with measured data.

Although there have been successful examples of dynamic
parameter identification in civil engineering, there are
several disadvantages to this kind of methods. Firstly, a large
amount of dynamic data is needed to derive an accurate
response of the structure. In many cases, an estimated
damping matrix must be used, which induces error into the
system identification. Finally, the identification process
usually does not occur at the element level, so we cannot
determine the damage location.

Now researchers pay more and more attention on static
paramefer estimation. There are two ways to measure the
discrepancy between the analytical model and the real
structure. The first one is displacement error estimator and
the second one is force error estimator. Based on them,

several methods have been proposed in Ref.[1], [3], [5], [8],



[10]. From those papers we can see the main difference
among those methods is to choose which estimator to express
the discrepancy between the analytical model and the real
structure, how to deal with incomplete measurements or
measurement sparsity problem and then what schemes are
used to solve the minimization problems. In the paper of
Banan and Hjelmstad®, the unknowns comprise both
constitutive parameters X and unmeasured displacements.
Thus the number of unknown parameters increases and the
stability of calculating process decreases. Sanayei and
Onipede" proposed the algorithm in which it condensed the
unmeasured displacements, whose limitation is that the
degrees of freedom of measured displacements are fixed in
all load cases and didn’t discuss the problem of measurement
error. The measurement error and measurement sparse is still
two main problems. Although output-error indicates the
errors of whole  calculation process, it mainly comes from
input-error and the problem about the relationship between
input-error and output-error remains.

In this paper, first we develop two identification
algorithms based on two estimators respectively. By using
Euler Coordinate, the system stiffness matrices in the
global coordinate can be linearly parameterized in terms
of kernel matrices that have solid physical basis and easy
to be assembled. Then by using Monte Carlo simulation, we
simulate the input data with measurement error and introduce
several statistical indices as criteria to compare the solutions
investigate its relationship between input-error and output-
error from two algorithms in detail. After better one is
determined, we assume the baseline distribution for the
system parameters and apply hypothesis test to locate and
assess damage of elements based on its results.

2. Formulations of Static Parameter Estimation

2.1 Governing Equilibrium Equations

Consider a structure is variously subjected to nlc static
load cases. Each case of forces should be neither equal to any
other case nor a linear combination of the previous cases of
applied forces. Through the finite element method, the force-
displacement relationship of a linear, finite-element model of
the structure under the ith load case is described as:

{r}=1k(@)1- {4} =12t )

where {f;} (N>X1) is the vector of applied forces for the ith
load case, {u;} (NX1) is the corresponding response vector
at N degrees of freedom in the finite element model of
system, [K(p)] is the structural stiffness matrix, and nlc is the

number of load cases in a load set.

To perform parameter estimation, the unknown parameters
are selected to be identified variables and the rest of the
parameters is assumed to be known with a high level of
confidence. If nup stands for the number of unknown
parameters, so the dimension of constitutive parameters {p}

isnup X1.

2.2 Two Kinds of Error Estimators

In the identification problem, we need an index to express
the discrepancy between the measured data of a real structure
and the calculated data from the analytical model. There are
two kinds of definitions of the error functions which are
illustrated in Fig.1.

a) DEE

Analytical Model

E.
{p) b) FEE

Fig. 1 Two kinds of error definitions

The first one is about nodal diéplacement. We define the
discrepancy between measured of real structure and the
calculated displacements of analytical model as a error
function of constitutive parameter of system {p} , and it is
called as the displacement error estimator(DEE), or output

error estimator.

{E@) =K@ {f}-w} @

The second one is about nodal equilibrium, in which the
error function is defined as the discrepancy between the
applied nodal forces and the calculated nodal forces
according to the analytical model. Therefore it is called as
the force error estimator (FEE).

{E(p)} = [K(P)]{u} {1} 3)



where {E(p)} are the error vectors under ith load, and they
are the function of unknown constitutive parameters of the
structural system. If the parameters {p} are exactly captures
the properties of the system, then both of {E,(p)} will be zero,
otherwise they will not be zero.

For nlc load cases, there are nlc pairs of {f} and {#,}. So
there are nlc error vectors {Ep)}. These error vectors can
be concatenated vertically into a new vector {E(p)}. It is as
follows:

[{E.(p)} ]

{E(p)}- @

v

{£:(p)}
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where the dimension of the vector {E(p)} is (n X nic) X 1.

2.3 Incomplete measured test data

As for a large-scale system, it is hard to measure the
complete response of a structure (e.g. when part of the
structure is inaccessible). In fact, not all displacements
need to bee measured. To help resolve this inherent problem,
we partition the displacement vector {x;} into two parts in
each case as follows: ,
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where u,, is the part of measured displacements, u,, is the part
of unmeasured ones, and it can be described as the follows:

Y. t=101}

where [Q] is a ith Boolean matrix that extracts the
measured response u,; from the complete displacement vector
u;. We can assume that the partitioning is different for the
different load cases. Corresponding with this division of
displacements, the applied force vector is also divided into
two parts and the stiffness matrix is divided into four parts.

Then Eq. (1)can be rewritten as:
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After being condensed out the unmeasured displacements
{u,;} , the Equ. (5) can be rewritten as follows:
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Therefore, based on the DEE, the displacement error
function {E{p)} is expressed as:
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On the other hand, based on FEE,we have:
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Here the component of error vector {E£(p)} in Equ.(7), (8)

is a nonlinear function of unknown parameters to be

estimated {p}={p, p, --- ... Puypl”- The dimension of {E(p)}

is Eni , where n; is the number of measurements at ith
nic

load case. We adopt the scalar of error vector as the criterion
of judgment.

I(p)={EE@V EW)} ©

In that case, the smaller the J(p), the better accuracy of
fitting we will get. The essence of parameter estimation is
to find a set of parameters, which can minimize the
difference J(p). Although the structure is linear, because of
the inversion of matrices, they change into nonlinear
problems. Now they turn into an optimal problem about
parameters. The mathematical model of this problem is

to find {p,i=1,2, ..., nup}

J(p) = {E@ {E(p)} — min

subjectto  {Xx;; = p, =x,,,i=12,..,nup}

make

where x;; and x;, are lower bounds and upper bounds of
unknown parameters respectively. The former is assumed to
be zero and the latter is three times of the true values. The
bounding constraints ensure that the parameters will not
become negative or too large.



2.4 Estimation Algorithm

At the same time, this is a nonlinear least square problem.
We will adopt Gauss-Newton method to solve this problem.

Assume the initial value of unknown parameters {p} as
{po} and {p} ={p,}+{A D}, then the problem of solving {p}
can be settled by determining the corrector vector { A p}.

Let the error vector {E(p)} be deployed around {p,}
according to Taylor series and omit the second and higher
order terms. We get,

{E(P)} ={E(po)}+[S(po)]-{Ap} (10)

where,

{E(py)}=1{E(p)} |{p}={po}

[S(po)1=[S(P)] I{p}={p0}

in  which [S ( p)]= {%E})—}] is formed through

differentiating {E(p)} with respect to each unknown
parameter. [S(p)] is mathematically called Jacobi matrix.
Here it would be rather called a Sensitivity Matrix following
Sanayei et al.”. The dimension of the sensitivity matrix is

() n)xnup, and

nup stands for the number of

unknown parameters. If we divide jth column of matrix
[S(p)] into nlc parts, according to the number of load cases,
for the case of DEE, the ith part can be described as:
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and for the case of FEE, we have:
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Based on minimum criterion, we can get the following

equations,
oI(p) _ 1y s
T fo} (13)
From Equ.(9), Equ.(10), Equ.(13), we get
[ [Ew) +[S(r)fartl=10} a9

Now they have changed into linear equations, we can get:
fan}= sl sl Is@n) Ewn}

{o}={pol+{ov)

(15)

Again by assuming the current {p} as the initial value, a
new corrector vector {Ap} and {p} can be achieved. This
process can be repeated until the required accuracy is
reached.

In order to identify a unique set of parameters from a
given set of measurements, the number of independent
measurements must be great than or equal to the number of
unknown parameters. If the aforementioned condition does
not hold, there may exist an infinite number of values of
parameters that satisfy these measurements [1].

Besides, two criteria are chosen to check the algorithm for
convergence. The first one is about the changes in the scalar
error function, J(p) and the second one is about changes in
the parameters, p, . /p;,, where n is the iteration number. As
to measure the goodness of fit between the real structure and
analytical model, the first one is more suitable. Tolerance
limits are set for two criteria. When any of the limits are
reached the algorithm is considered to have converged.
These limits can be used to control the desired accuracy in
the identified parameters.

2.5 Parameterized Model

In order to use the above parameter estimation algorithms,
we must specify a parameterized model of our system. The
frame structures are widely used in civil engineering. Let us
assume that the topology of the frame structure is known,
and consider that each element or member of the structure
Firstly, the
displacements and deformations of a beam element can be

possesses its own independent parameters.



described schematically as Fig. 2 shows. .

In the Euler coordinate as shown in Fig. 2(a), we can let
the element constitutive relationship be expressed in the
form:

[D,(p)] - ZP [D,,] a6)

Where M, is the total number of parameters associated with
element m, P, is constitutive parameter, D,, is parameter-
constitutive kernel and D, is

independent matrices,

characteristic matrix of element m.

Node ¢

b) Nodal displacements in global coordinate

Fig. 2 Two kinds of coordinates

For the problems of frame structure, there are two
independent parameters, namely, M,, = 2, tensile stiffness EA,
and bending stiffness EI. As to element m, we use /, to
express its length and we can get

Py b, D/

1 00 0 0O
D,={0 0 0 D, =10 4 2
0 00O 0 2 4
(axial) (flexural)

In finite element method, we use global coordinate.
Two kinds of coordinates is shown schematically in Fig. 3
and their relationship between them can be expressed as

{a,}=18,1{u,}

Where a,, and u, is the deformation and displacement
vector of element m in Euler coordinate, global coordinate
respectively. B,, is called as translative matrix, and is derived

as follows:
-cosd, =—sing, O «cosf, sinfg, O
B.]-|- sinf,,  cosf, 1 sing,  cod, 0
sing, cosd, 0 sing, _ cod, 1
lm lm lm lm

Therefore the element stiffness matrix can be derived as
follows:

[k, (P)] = ZP [B,T'[D,][B,]

According to the stiffness summation rule, we can get:

[K(p)]= 3 [A 1k (P)]

= g

Z[Am 19 [B,, ' D, 1IB,, ]

m=1
N’ll
= > P[4, 1(B,1'[D,,]iB,] a7
m=1 .
Nm
T
+ p2m [A'm][Bm] [DZm][‘Bm]
m=]
Where N,, is the number of the elements, and [A,] is the

location matrix of element m. When the structure is given,
[B,T1'[D,,][B,,] will be a constant matrix depending on

element geometry only. The parameterized finite element
model is formulated by decomposing the stiffness matrix into
constitutive parameters and constant matrices for each

element.



3. Statistical Parameter Estimation

The formulas above don’t involve any measurement errors.
Practically, measured data always contain certain levels of
noise. Those noises include not only true measurement errors,
but also those caused by difference in support and connection
between the actual structure and assumed model. The
modeling error, as it known, may also include other effects
such as manufacturing inconsistencies, residual or thermal
stresses, or material flaws. Modeling error is not the topic of
this discussion, and is not considered in this paper.

Now we only deal with the errors of input data that consist
of force vectors and displacement vectors. If the force is
applied on only one dimension of the freedom space at one
time, then except for that forced dimension, all other
dimensions apparently will have zero force vector
components. On the. other hand, the displacement will be
formed along all dimensions. As a result, the force can be
assumed as having no errors in the process of analogical
(simulating) measuring and only . displacement vector is
added with noise.

3.1 Modeling of Input Error

Although we consider that there are noises only in the
measured displacements, it is difficult, if not impossible, to
mathematically model measurement noise. However, for
numerical experimentation, we can simulate them by varying
the calculated displacerﬁent measurement values slightly as
shown in Fig. 3 with a known probability distribution.

{u;}

Fig. 3 Simulated measured displacements

The most commonly used distribution is the normal
distribution which represents a higher probability of noise
level closer to the mean, and a lower probability of larger
noise. To range the distribution, it is convenient to use a
95% confidence interval. - Therefore, k,,, or I, equals to
1.96 0 with 95% confidence. Namely, the variance of

measurement noise is

(18)

Having determined the distribution parameterized on [, ,
Equ.(18) is used to generate a set of normal random vector n;

with a mean of zero and deviation ¢ . Then,

{w} =[QNK (P {fi}+{n}

(19)

where {p} is the vector of true values of real structure. The
response {«;}is taken as the measured response of the real
structure.

3.2 Statistical Indices

In a noisy environment, the parameters we are estimating
Through Monte Carlo
simulation we produce a sample of random solutions {p}

behave as random variables.
from noisy data whose statistics are completely known to us.
To study our proposed estimation algorithms and to find
trends in the behavior of these estimators, we will use
statistical indices to characterize our results. '

For noisy response {i,, k=1,2, ..., NOBS }, the estimation
simulation develops a sample {p;,, k=1,2, ..., NOBS} for
every variable, where p;, represent the Kth observation of
parameter j and NOBS stands for the number of observations.
So the sample size of every variable is NOBS. By increasing
the sample size NOBS and using the method of Maximum
Likelihood, the mean and deviation of the sample converge
to the mean and deviation of the population.

Taking p;, to be the true value of the parameter j, the
percentage error of the kth observation of the jth parameter is

Piy—Dj,

E;, = 100
Py

20)

The mean and deviation of the percentage error of the jth
parameter is

1 NOBS
E=— Z E,, 1)
NOBS 1
1 NOBS
SD = (22)

——— N(E., -ME)?
NOBS 2( e )

For each unknown parameter p;, there will be NOBS
values. In all, there will be NUP x NOBS estimated
parameters. It is desirable to reduce this large number to
single grand mean percentage error (GM), and a single grand
deviation percentage error (GSD) for ease of comparison.
GM and GSD will be used to compare the input-output error



behavior of various sets.

NUP NOBS

M=—-—1——2 ZE-k @3)
NOBS-NUP 4 & *

1 NUP NOBS
GSD = [ ]2 Z(EM -GM )?
NUP - NOBS -1|# #

4
In the same sense that a sample size of 1 is not valid
statistically, reducing all these experiments to just two scalar
values is not an accurate representation; in particular, the GM
does not show maximums or minimums, but is merely a

mean.

3.3 Damage Assessment Using a Hypothesis Test

After the mean and deviation values for each member of
current structure have been obtained from the data
perturbation trials, normally distributed parameters can be
assumed. Suppose that measurements are obtained under
exactly the same conditions for both the current structure and
the associated undamaged structure. Therefore the statistical
distributions of system parameters in the undamaged
structure can be reasonably assumed based on the
characteristics of the above Monte Carlo simulation. The
assumed normal distribution N,(I, ¢ %) will be called the
baseline distribution for the system parameter, wherein o is
the same as those of current structure and I represents the
intact status of member in undamaged structure. Let we
assume a random variable X=p, /p, where p is the intact
Young’s modulus of element. A hypothesis test can be
applied to determine damaged members by useful properties
of the normal distribution. The hypothesis test is defined as

follows:

Hy u=1

H;: u<l
Statistic: X
AcceptH, if X =C
Otherwise, accept H,

Rule form:

Significance level: o

X -1

Acceptance region: P(-k, < )=1-a

Result:

C=1-k, -0

where C is the critical value to classify the damaged or
undamaged elements. Using the hypothesis test, the damage
status of a member in the current structure is evaluated as
taken as

Fig. 4 illustrates. A member that accepts H, is

Damaged member

Baseline distribution

Significance

Level @

X X 1
-

Undamaged member

Damaged region ~ C Undamaged region

Fig. 4 Interval estimation for damage assessment

undamaged with 100x(1-a)% confidence; in the same way,
a member that accepts H, is taken as damaged with
100x(1-a)% confidence.
represents the damage status of a member with the

The damage index I,,, which

significance level of a, is defined as follows:

I - {O if Hyacceptd (x =c) 25)

1 if H acceptd (x <c)

The severity of damage S,, which indicates how serious a
member is damaged with the significance level of a, is
defined as a relative distance of the estimated one from the

intact value

S, =(1-x)xI,»x100% (26)

4. Numerical Simulation

In this section, we wish to estimate the parameters of a
frame structure using the two algorithms described above.
The 5-story, two-bay steel frame shown in Fig.5 was used
in the study. The frame was divided into 25 frame elements.
Nodes were assigned at every joint, and each node provided
three degrees of freedom. Elements 1-15 make up the
columns, and elements 16-25 make up the beams of the
frame. The cross-sectional areas, moment of inertias of
elements is listed in table 1 and the modulus of elasticity are

as follows.

a. Undamaged structure
Young’s modulus for all elements=206.8 Gpa

b. Current structure (or real structure)



Damage in the structure is simulated with reductions in
the Young’s modulus of elements, details of which are
listed in table 2. All of other elements are the same as
before.

Table 1 Cross Sectional Properties

Member | Area(cm?®) | Moment of inertia (cm*)
1~15 1065 442246
16~21 1606 442246
22~25 1406 422246
Table 2 Damage Situations
Member Damage
5 50%
13 40%
21 25%
24 25
N
13 14 15
22 23
10 11 12
20 21
; =)
8 9 &
18 19 <
X
vy
6
4
16 > 17
1 2 3
77Lr 77777~ e
I~ I~ “1

Fig.5 5-story, two-bay steel frame
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Fig. 6 A typical load set

In the present study we use three typical load cases as Fig.

6 shows. The measurements consist of three parts: the
horizontal displacements of all nodes under load case (a), the
vertical displacements of all nodes under load case (b) and
the rotational angles of all nodes under load case (c).

The accuracy of Monte Carlo simulation depends on the
sample size, which should be large enough to establish
significant estimates. We set NOBS=30.

We take the Young’s modulus of element as a parameter
to be estimated.

4.1 Comparison of Estimator Performances
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a) The results from the first algorithm
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b) The results from the second algorithm

Fig. 7 The sample of estimated elastic modulus ratio wdp;)
of member 3 with 5% input error

Because there are two kinds of error definitions, we have
developed two methodologies to identify the element
properties, the first one based on DEE and the second one
based on FEE. Therefor we can obtain two sets of solutions.
Fig.7 shows one of nup solution samples from those two
algorithms with 5% input error respectively. They are the
samples of element 3, and others are more or less alike. In
Fig. 7(a), all the iteration computations stop on the first
convergence criterion. So we can see the identification
results would not change if there are no upper and lower
constraint. However, as shown in Fig. 7(b), two values move
toward the upper bounds and we can see the results would



change as the upper bound increases. Part of computation
processes stop on the second convergence criterion.
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a) The results from the first algorithm
160
120 L a
Aaadaad®t 4,0 Lapiaanns b
80
° ® mean 4 standard deviation
40 1 ° * © ® ° ® [
- [ ]
0 1 I o 1 L L ] Py
. .
e* *5 10 154 Pl 25
_40 - . P [
element number
-80

b) The results from the second algorithm

Fig. 8 Mean and standard deviation
of the percentage error of all members with 5% input error

Fig.8 shows the means and deviations of all members with
5% input error. We can clearly see that the deviations in (b)
are much larger than those in (a).

To compare the behavior of the proposed algorithms, we
need a criterion. The mean defined here indicates the bias
between the estimated parameters and the true values, and
thus provides one of suitable measures of goodness of fit. An
unbiased estimation is, practically speaking, more desirable
than a biased estimation. The expected value of mean for an
unbiased estimator is equal to zero. However, an estimator
with a small bias and a small deviation might be preferred to
one that is unbiased but has a large deviation. From this, the
first one is much better.

4.2 Relationship between Input-error and Output-error
Fig. 9 shows the relationship between the input-error and
output-error from the first algorithm. The grand means and
grand variations are plotted against the input error as noisy
amplitude increases. Although ecrrors in the identified
parameters are always magnified, if the input error is small
enough to utilize the linear input-output error behavior range,
it is possible to use the identified parameters for damage

30
25 | {
g 20 | .M
5 15 |
£ g GSD 1
woqg |
5
3 5| /.’\\
8 0 I E— L
-5 2 e 8 \,/ 10

Input Error (%)

Fig.9 Variations of statistical indices for DEE

with noise amplitude

assessment.- Even if we known that the resuits depend on

cases, we can determine the stability of algorithm

approximately based on them.

4.3 Damage Localization and assessment

We set a=5%, 0=25%

so k,=1.65,C=1-1.650=0.59

In practical engineering application, it is difficult to
measure input data many. times and then use the average
value of them. In simulation study, we only choose one of
the samples {u,} with 5% measurement error, and then we
get corresponding sample, {p;, j=1,2, ..., nup} estimated
parameters.

60
M estimated severrity of damage

# assumed values

(2]
(=]
T

S
o

%
Z
9

N
o

Severity of Damages SD
- w
=) =)

o

1 5 9 13 17 21 25
Member Number

Fig. 10 Severity damage charts

By using this sample, the damage severity of all
members is presented in Fig. 10. One damaged members
are identified as damaged and main part of undamaged
members are identified as undamaged by the hypothesis
test. In the Fig. 10, when x<1, we also calculated their
severity of damage. So two other damaged members are
found. However, since the damage severity of other
members is very small compared to that of the damaged
members, it is concluded that there is little chance of

damage in those members. Those results have 95%



confidence.
5. Conclusion

This paper presents two methodologies to identify the
element properties based on the previous works of many
researchers. By Carlo methods, the
performances of two algorithms in presence of measurement

using Monte

errors are investigated in details. Based on Eqgs.11 and 12
and numerical simulations, the following conclusions can
be drawn:

1) If there is free from the measurement error, both of
them can reconstruct the element rigidities of frame
structures accurately. Under the situation of complete
measurements, the second algorithm based on the
force-error estimator is more effective because its
mathematical model is linear least-square problem.

2) The first algorithm is distinguished in the presence of
measurement noise. The quality of sensitivity matrix
plays important part in the iteration computation. The
sensitivity matrix in the first algorithm is not affected
by the measurement noise. Just because of this, it
enhances the stability of this algorithm largely.

3) In terms of uniqueness of the identified parameters,
there is no mathematical proof ensuring that the
identified parameters are unique. However, based on
the works of the writers, when the algorithm
converged on the first criterion, it converged on the
whole minimum, not on a local minimum under the
condition that the amplitude of noise is bellow 10%.,

4) All the results listed here are the solutions of
complete identification. Under the condition of part
identification, the performances of two algorithms
will improve as the number of variables decreases.

In this paper, all works are theoretical derivations and
numerical simulation. The first algorithm presented here is
an excellent tool to reconstruct the element rigidities of steel
frame structures. Future work can include laboratory testing
to validate the proposed technique, and then apply it outside
of the laboratory to a full damage assessment system in
engineering.
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