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Analyses for dynamic response of coupling motion of a soil particle and a pore water in a satu-
rated soil layer by 3D FEM often encounter the physical limitation of a single processor
computer. In this study, at first parallel FEM formulation based on Weighted Residual Method
(WRM) was derived to overcome the limitation applying Domain Decomposition Method
(DDM) with an iterative solver of Conjugate Gradient (CG) method. Then a new algorithm of
interprocessor communication was also developed to achieve the efficient parallel computation.
Finally, the efficiency and validity of the proposed analysis were shown comparing the

analytical results with experimental data.
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1. Introduction

Accurate estimation of dynamic behaviors of saturated soil
layers is important to investigate seismic response of civil
structures. It is not clear how much pore waters of saturated soils
influence on dynamic response of the structures. When dynamic
behaviors of saturated soil layers are analyzed using FEM, the
model of the saturated soil as a two-phase material of soil particle

. and water with different mechanical properties brings more
realistic results than the model of equivalent homogenous solid
material”. 3D FEM dynamic analysis for the two-phase
continuum is considered as one of the most reliable analysis.
However, in this type of the analysis large number of freedom for
unknowns have to be solved and the computing time by a single
processor computer very often exceeds the available computer
capacity.

The objective of this study is development of the parallel
computation algorithm for the dynamic analysis of soil layers to
overcome the problem mentioned above. In the parallel compu-
tation using a multi processor computer, it is required that
imbalance of computation of each processor and communi-
cations between the multi processors are reduced as much as
possible.

In Domain Decomposition Method (DDM) a whole of
domain for a FEM analysis are separated into small subdomains

and the computation of each subdomain is easily assigned to each
processor of a multi processor computer. In DDM an iterative
solver such as Conjugate Gradient (CG) method is used. CG
method is effective to reduce communication time of multi
processors. DDM is one of most suitable methods to satisfy the
conditions for parallel computation. There are several proposed
DDM algorithms in the fields of finite element analysis as
reported by Tallec”; Papadrakakis®, and Farhat®. However, most
of them were used for analyzing homogenous solid materials. In
the previous studies on solids the formulation for DDM was
derived based on variational principle, which is not applicable for
a fluid. There is no application of DDM for the dynamic behavior
of saturated soil layers considering granular solid and pore fluid
coupling. In this paper, a derivation of a new parallel computation
algorithm of 3D FEM analysis for dynamic response of saturated
soil layers is presented based on DDM and using Weighted
Residual Method (WRM). WRM is suitable for the solid and
fluid coupling problem.

Efforts to achieve efficient interprocessors communication is
also important to reduce the communication time between the
processors. An efficient algorithm for interprocessor communica-
tion for hypercube system was developed in this paper.

Finally the analysis for a simple saturated soil layer was per-
formed and the analytical results of dynamic pore water were
compared with the experimental data obtained by one of authors”
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to validate the accuracy of the developed algorithm. To examine
the efficiericy of the parallel computation by the proposed method,
relations between number of processors and computation time
were checked.

2. Fundamental Equations

Saturated soils are viewed here as the material which is com-
posed of a granular sotid and a pore fluid. The granular solid and
the pore fluid have the individual mechanical properties.
Assuming infinitesimal displacement the equations of motion for
the saturated porous material are given as follows .
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The properties are expressed by the following constitutive
relations”,
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where o are the components of the total stress tensor for the
saturated porous material; 7 is the fluid pressure; p and p;are the
mass densities of the saturated soil and the fluid, respectively; £ is
the coefficient of permeability; fis the porosity; u; and w; are the
component of displacement of the solid and the fluid, respectively.
The superposed dot implies time derivative and (), denotes the
first order derivative with respect to coordinate x,. &; is the
Kronecker's delta; Cj,; are the components of the elasticity tensor;
m is the bulk modulus of the fluid; o is' a measure of
compressibility of solid particles representing the contact areas of
the particles. ¢; are the components of the solid strain; and {'is the
volume change of the fluid. In this study the dynamic behavior of
saturated layer is investigated for the small strain amplitude where
there is no failure in the soil layer. The mechanical property of soil
skeleton assumed elastic. The relation between these strains and
the displacements are written as follows.
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3. Domain Decomposition Method for Saturated Soil Layers

3.1 Domain Decomposition

The Domain Decomposition Method (DDM) is a method
which refers to the substructuring techniques. Totally non-
overlapping partitions split an original domain into several small
disjoint subdomains. DDM converts the original problem to an
interface problem”. With the advent of parallel processing
machines DDM has become more popular for the solution of
finite element analysis. A whole of domain is fictitiously divided

into a set of non-overlapping subdomains. The FEM analyses of
subdomains are performed under constraint of continuity of
displacement among the subdomains. As an example, a domain
Qs decomposed into two subdomains £2” and £? as shown in
Fig. 1, where I is the interface between 27 and €27, In each
subdomain fundamental equation (1) and the constitutive relation
(2) are satisfied. However, to enforce their continuity on their
interface, the additional boundary conditions on the interface are
required and written as follows.
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where A, is a traction tensor and # is an outer normal vector.
2

Fig.1 Decomposition into Two Subdomains

To obtain the solution for the whole domain, the displacement
based weighted residual formulation for Eqs. (1) and (4), are led
as follows.
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where s denotes the number of subdomains. For the inter-
subdomains constraint the following equations are given.
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3.2 FEM Formulation

Applying the integration by part of Green's theorem to the first
term of left hand side Eq. (6) and using the interpolating functions
as the weight in the standard Galerkin method”, the Egs. (6) and
(7) above may be written as follows.
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where M®, D® and K are the mass, damping and stiffness

matrices of each subdomain, respectively. The detailed formula-
tions for an 8-node brick element are written in Appendix A. The

subscript # and w denote the solid and fluid parts respectively, and.

the subscript ¢ designates the coupled conditions. The vectors
d’*’ and d° are the nodal relative displacements for a solid and
a fluid, respectively. The vector A is composed of 2, which is
the traction forces in the interface nodes. The matrix BY is signed
Boolean matrix, which localizes a subdomain quantity to the
subdomain interface. If the interior degrees of .freedom are
numbered first and the interface ones are numbered last, the
Boolean matrix B? takes the form

B =[o 1] (10) |

where 0 is a null matrix and 7 is identity matrix.

All the matrices in Eq. (8a) are generally banded. However,
when a lumped mass approach is used instead of a consistent
mass, the matrix M and M(*’become diagonal and their
coupled matrix is set to the null matrix. The damping matrix for a
granular solid is introduced as a form of Rayleigh damping”

which is combination of the mass and stiffness matrix as written
in Eq. (11).
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where coefficients a, and g, are defined according to the damping
ratio §and the natural frequency @ of the granular solid.

In the case of an earthquake loading where the input is in the
form of the base acceleration #, , the dynamic loading vector F¥
is written as follows.

M1
FO =" "4 (12)
in which 1 is a unity vector.

3.3 One-step Algorithms for Solving Equation of Motion

Newmark’s” method is most widely used direct time integra-
tion method to solve the equation of motion such as Eq. (8a). It is
not necessary to apply a direct integration when mechanical
property of soil particle is viewed as elastic. However in this
paper the algorithm was developed expecting to be extended to
non-linear conditions. Two parameter 8 and y are used to deter-
mine the stability and accuracy of the algorithm. When p=14
and y=1/2, the method leads to the unconditionally stable and
second order accurate algorithm'”,

Applying Newmark’s method and introducing subscript n+1
for a time step Eqs. (8a) and (8b) are written as follows.
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When the values of vector 4,,; in Eq. (14) are obtained using
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CG algorithm which is explained in the next section, the relative

displacement vector of each subdomain for current time step can

be evaluated by the following equation.
— ol = T

dl(li; = K(S) : (Fn(jl) _B(S) A‘n+1) (16)

Using the displacement in Eq. (16), the velocity and acceleration

vector of each subdomain for current time step is calculated as
follows.

g =-afs) -] a7
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When the number of subdomains is N, Egs. (14) and (15) are
extended to Eqs. (18a) and (18b) for N, subdomains. '

Ad, =P, (182)
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34CG Algorithms

Since A, is a symmetrical positive definite matrix, CG method
which is an iterative solver, is most suitable to compute the
unique solution for Eqs. (18a) and (18b) in a parallel machine.
The idea of CG method is explained in the books for the least-
square optimization, written by Gill'¥ and Press'?.

In the CG method, vector A is obtained as unique solution of
the following minimization problem. In this section, subscript of

A1 1s temporary discarded for simplicity.

m{n{—;-/lTA,l —P,T/l} (20)

Suppose a non-singular matrix .S satisfies the relation in Eq.

@1
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where D, is a diagonal matrix. If vis defined such that A=Svthen
~ vcan be determined as the solution of the following minimizing
problem.

min{évr Dy - P,TSV} 22

S and v are defined in Egs. (23a) and (23b).

(23a)
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k is number of iteration and N, is the number of iteration to
s kay- is
the search direction vector of the Conjugate Gradient for the
iteration of k, where N, is the number of degrees of freedom of

interface nodes. Vector A is calculated in Eq. (24).
Ny =1

A= kask
k=0

In general the matrix S is not known a priori but it is possible to
compute the columns of § sequentially. Once s, is known then v
can be determined in CG algorithm. The CG algorithm for
solving Eq. (18) goes as follows. Initial values 4, and r, are given
by Egs. (25a) and (25b).

dy=0

converge. The column vector s, = (s w S

)

(25a)

n=P (25b)

The following calculations are iterated until convergence is con-

firmed.

Prec. 7, , =A'r,,
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A preconditioner A ," in equation (25c¢) is used to enhance the
convergence rate and given in Eq. (26)*.
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(26)
Subscript b5 in Eq. (26) designates the interface nodes.

3.5 Reorthogonalization Procedures

When the linear dynamic problem, such as Eq. (18) is solved,
the different equivalent loading vector has to be evaluated on each
time step while the equivalent stiffness matrix remains constant.
This problem is known as repeated right-hand side (RHS)
problem. The direct solver possesses a clear advantage over the
iterative method since the computation of the equivalent stiffness
matrix is not repeated and only one forward and one backward
substitution is required for each time step. On the other hand the
iterative solver must restart from every scratch and repeat itera-
tions for every time step. To overcome the drawback of the
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iterative solver, Farhat' has proposed a method based on the CG
method incorporating with a reorthogonalization procedure. This
method basically formulates the overall problem as a series of
consecutive minimization problem over Arorthogonal and
supplementary subspaces, and tailors the CG method via projec-
tion of the new interface problem onto an agglomerated Krylov
space associated with previous right-hand sides. To improve this
solution with an accelerated CG algorithm, all search directions
are orthogonalized with respect to the Krylov subspaces
generated by previous right-hand sides. This search direction
modification is written as follows™.

kT

< S; A;Siy

St =S — 0 ks @7)
=1 Si A;S;

As the starting point for defining vector A, can be evaluated by Eq.
(28).

S’P.
dy=8——1L i=12- 28)

where § is the rectangular matrix of the orthogonalized of the
previous search direction S. 5, is used only to calculated A,

4. Parallel Computing Implementation

For efficiency of paralle] implementation of the FEM system,
the two conditions below should be always considered. First, the
load imbalance among processors should be minimized as
possible, and secondarity the ratio of the computation to the inter-
processor communication should be maximized as possible'',
The former is achieved by assigning a nearly equal number of
elements to each subdomain. This condition can be done manu-
ally or by using automatic mesh partition software. The latter
point depends on how the sequences of algorithms work in
paralle]l manner.

In order to achieve the second condition above, the proposed
DDM algorithms in the foregoing section were implemented as a
Single Program Multiple Data (SPMD) programming model.
The computer code was developed using FORTRAN-77 for
Cray Origin/2000 multi processor machine. By this programming
model, each processor executes the same code asynchronously
without communicating each other. The synchronization takes
place only when processors need to exchange data in order to
obtain the overall solution. Their inter-communication was per-
formed in the message-passing paradigm and the PVM'
programming libraries was used as a parallel interpreter.

In the implementation, input data as well as interface condition
of each subdomain has to be defined separately. Each processor
reads its own data and communicates if necessary. When the
code is terminated, the final computational results are obtained in
each processor independently.

4.1 Subdomain Basis Algorithm

Most parts of the algorithm can be done in subdomain basis
without interprocessor communication. After each subdomain is
assigned to an individual processor, the processor is responsible to
read/write its own data and conducts computations independently.
The independent computations include forming and assembling
mass matrix M¥, damping matrix D?, and stiffhess matrix K as
well as equivalent stiffness matrix K¢/, for each subdomain.
Also, for each time step of dynamic analysis, forming and
assembling the dynamic loading vector F¥ and their equivalent
loading F‘*/ canbe done in parallel.

{(a). Initial Distribution of Messages

(¥, ¥,)

¥,.3,)

(b). Distribution Before the Second Step

(c). Distribution Before the Thrid Step

(d). Final Distribution of Messages
Fig. 2 Interprocessor Communication on 3-D Hypercube

Although the CG algorithm in Eq. (25) for solving Eq. (18)
requires the interprocessor communication, the algorithm is still
amenable to parallel manner, For example, consider matrix-
vector  product 4,5, in  the formulation of
ve=2lr,[stA;s,. The vector y, - is evaluated as
y, =B®K/" B'"s, in each processor. In the subdomain
basis algorithm using the CG method only vector y, is exchanged
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with other processor. It is effective to reduce communication.
When the direct solver is used, communication time is increased
to exchange matrix K'*/ and vector F*/.

4.2 Interprocessor Communication

There are a few common patterns of interprocessor communi-
cation that are frequently used as building blocks in a variety of
parallel algorithms. These patterns depend on the architecture of
the parallel computer machine. Since the interprocessor commu-
nication based on hypercube can be applied for most of modem
parallel computer machine, only this hypercube pattem is
considered in this paper.

For the simplicity, a model for three-dimensional hypercube
networking in Fig, 2 is considered. As the first step, mapping the
subdomain into the three-dimensional hypercube processors such
that each subdomain is assigned into the different processor sepa-
rately. The neighbors in the subdomain are mapped to hypercube
processors whose processor labels differ in exactly one bit posi-
tion. Then, the interprocessor communication is carried out as
graphically shown in Fig. 2. Assume that each vector y, in paren-
theses in the figure is exchanged each other. The processors
communicate in pairs when the binary number of the checked bit
is different. The communication starts from the lowest dimension
of the hypercube and then proceeds along successively higher
dimension. At the termination of communication procedures,
each processor holds the same overall result of vector ;. A simple
computer code for the algorithm is shown in appendix B.

5. Results and Discussions

5.1 Validation of Parallel Computation

For validating this parallel computational method, the experi-
mental model based on work of Kawamura® has been chosen and
compared with the analytical results. The model was made of
saturated Toyoura fine sand and was shaken on a shaking table in
sinusoidal motion with the amplitude of acceleration 300 gals and
frequency of 3 Hz. The dimensions of model are 200 cm long,
100 cm wide and 56 cm high.

Table 1 Material Properties of Model
G v p m f k
(gffen’) (gffent’) | (gfiem’) (cmy/sec)
1.5¢+5 0.33 161 2.1e7 | 0392 0.012

For the FEM analysis, the model was divided into 2640 ele-
ments and 3289 nodes with more than /7000 degrees of
freedoms. The FEM mesh above then was partitioned into eight
subdomains, as shown in Fig. 3 and solved by eight processors.
The material properties of model are shown in Table 1. Damping
ratio of granular material is assumed 10%. The coefficient of a
was taken as 1. A time step &=0.0I second was used. The

responses of pore water pressures were picked up on several
nodes in the left side of the model which is the vertical boundary
orthogonal to the vibrating direction. A good agreement has been
obtained when these responses are plotted and compared with
their experimental results as shown in Fig. 4. When a saturated
sand layer was vibrated in the experiment, there were fiictions
between the soil and the container surfaces. In the FEM analysis
these frictions are not taken into account. Therefore the numerical
result does not coincide exactly with the experimental result
shown in Fig, 4.

In the experiment resultant force of the dynamic total stresses
including effective stresses, which were acting on the wall, was
184.5 kN when the horizontal acceleration of the soil layer was
148 gals. The calculated resultant force for this condition is 191.3
KN. The predicted values for the pore water and soil skeletons are
very close to the observed one.

SSOUERARKEEND

Fig. 3 Decomposttion in Eight Subdomains
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Fig. 4 A Comparison of Dynamic Pore Pressure
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5.2 Performance of Parallel Computation

To evaluate the performance of this DDM algorithm, the typi-
cal saturated soil layers model mentioned above has been ana-
lyzed. The model size and the number of processors are increased
by setting a constant size of the problem per processor. For each
processor, the model size is kept constant as 96 elements with 900
number of degrees of freedoms. An executing computational
time and the computer-memory requirement were investigated
using a performance indicator. The executing computer time was
recorded after the first time step of dynamic analysis finished.
These values are tabulated in Table 2. The executing time in
Table 2 is the CPU time for execution of command including
interprocessor communication.

Table 2 Performance of Parallel Computation
Number of Problem Executing Memory
Processors Size time (sec.) Mb)
1 1x96 1241 4147
2 2x96 13.86 4.156
4 4x96 1471 4177
8 8x96 14.89 4218
16 16x 96 16.90 4.308

The percentage of increasing of the executing computational
time and the computer-memory requirement for each model scale
are calculated and results are shown in Table 3. As it is expected,
the parallel computation using the proposed algorithm reduces
executing time as well as computer-memory requirement.
Although the model is scaled in sixteen times from the original
size, the executing computational time and the computer-memory
requirement only increase around 27% and 3.88%, respectively.
Proposed method is more effective than a serial method for one
loading in linear case because the computations by the proposed
method are conducted in the subdomain basis with less
interprocessor communication. In a nonlinear case the
computations should be repeated for many loading steps.
Therefore the proposed method is more effective for a nonlinear
case than a linear case.

Table 3 Paralle]l Computation Indicators

Scale of Increasing of Increasing of Memory
Model Executing Time (%) Requirement (%)

1 0 0.00

2 10 0.21

4 16 0.71

8 17 1.71

16 27 3.88

6. Conclusions

As the results of this study followihgs are made clear.

1) The formulation for 3D FEM analysis of dynamic behavior
of saturated soil layers with coupling solid and fluid, has
been derived based on Domain Decomposition Method
which is suitable for parallel computation, This formulation
is derived using Weighted Residual Method. The solution in
this paper has been successfully applied to the case of elastic
condition which corresponds with small strain amplitude of
soils. This algorithm should be more effective for the case of
non-linear behavior corresponding with large strain ampli-
tude.

2) Conjugate Gradient Method was used as the iterative solver
in the Domain Decomposition derivation. Reorthogonaliza-
tion procedure was applied to reduce the drawback of the
iterative solver for right hand side problems.

3) To achieve efficient parallel computation the computer
algorithm was developed based on the subdomains and hy-
percube interprocessor communication. The characteristics
of the developed algorithm is that the paradigm is easy to
understand what the computer machine is asked to do and
that the method is applicable to most of parallel machine
from Massively Parallel Processors (MPP) machines to
assembles of connected several Personal Computer (PCs).

4) A simple model for a saturated soil layers was analyzed
using the proposed algorithm. The analytical results of the
pore water pressure were compared with the experiment data.
The good agreement between the analysis and the experi-
ment proves the accuracy of the proposed algorithm. The
efficiency of parallel computation was confirmed by
checking the relation between the computing time and the
number of processors in the multi processor computer.

Appendix A Matrices Formulations

Detail formulation of the matrices in Eq. (9) for a three-
dimensional 8-node brick element is presented in this appendix.

These formulations were done as conventional FEM and can be
found in several literatures™'®. These matrices are defined as inte-
gration of the overall of the element as shown in the following
expressions.
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K= [ { B"CBlJ|drds s
o= [ [ [ ~H HYldrdsat
M,=pf [ [ H HJ\drdsa

M, =%pL [ [nm o arasa

where #, s and ¢ are the direction of the local axes of element, |.7|
is the determinant of Jacobian metrix and H is interpolating
function matrix. While the constitutive matrix- C and the strain-
displacement matrix B are defined as follows,

(¢, ¢ ¢ 0 0 0 am]
¢, ¢ ¢, 0 0 0 am
¢, ¢ ¢ 0 0 0 am
C={o 0 0 G0 0 0
0 0 0 0 G 0 0
0 0 0 0 0 G 0
lom am am 0 0 0 m |

in which

4G 2
c =K'+——3‘+C( m

2G..

where xis the bulk modutus of granillar solid material, and

_[B, 0
B=
[0 BW]

in which
[(N,, 0 0 0
0 N Iy g .- 0
0 0 N, Ng,
B, = . \
N,, N, 0 0
0 N,, N, Ng,
[Nie o 0 Ny, Ng,
‘Bw =lN1.x Nl,y Ny, Ns.zj
Appendix B Example Codes

In this appendix, a simple computer code for conducting in-
terprocessor communication of the hypercube networking in Fig,
2 based on FORTRAN-77 is introduced. The PVM parallel
libraries are used as parallel interpreter tools.

Since the computer code is built in SPMD model, each of
spawning codes has an integer entry number in their group
working, While the hypercube processors number is designed in
binary number. On the other hands, Task Identifier (TID) number
is used to identify the active processors in a current process. The
subroutine whoiam is used to convert the entry numbers into
their binary number, and the subroutine findpro for con-
verting into active TID numbers. A variable me in these subrou-
tines is designed as the entry number, a variable imyid is the
hypercube binary number and iam and ippro are TID numbers,
respectively.

To explain how the processors communicate each other, con-
sider a hypercube processor is assigned binary number 100, for
example. The 100 binary number mean is, 1, 0 and 0 are binary
codes for dimension number three, two and one, respectively. In
hypercube paradigm, the communication starts from the lowest
dimension and then proceeds along successively higher dimen-
sions. In this example, the lowest dimension is denoted in binary
number 0. For the first iteration, the processor needs to find the
neighbor with different 1 bit of binary code number. According to
Fig, 2, the neighbor is processor with binary number 101. To
define this neighbor by a binary number, the statements of com-
puter code below are used. See subroutine accrevec for
detail.

call equal (idimen,imyid,i2i)
if (imyid (icdim) .eq.0) i2i (icdim)=1
call equal (idimen,i2i,ipartner)

call findpro (idimen,ipartner,ifpro)
ippro=ifpro

Afier the pair neighbor has been found the vector data can be
packed and sending to the processor which binary number 101 as
a destination. At the same moment, the current processor also
receives the vector data from processor where it sending data
before. These processes are handled in the statements below.

C++ Sending data to partner processor
call PVMFINITSEND (PVMDATARAW, info)
call PVMFPACK (INTEGER4,1lmsg,1l,1,info)
call PVMFPACK (REALS,rstem,lmsqg,1l,info)
call PVMFSEND (ippro, 6872,info)

C++ Receiving data from partner processor
call PVMFRECV(ippro,6872,info)
call PVMFUNPACK (INTEGER4,1msqg,1,1,info)
call PVMFUNPACK (REALS,rstem,lmsg,l,info)

Almost same processes as above also perform in processor which
binary number 101. Since the binary number in current iteration
is 1, this processor should find it pair neighbor which binary
number 0.

subroutine accrevec (me,idimen,lmsqg, revec,

+ rsvec, rstem)
include '../include/fpvm3.h'
C———-= Exchange and accumulate the real data----

implicit real*8(a-h,o-z)
implicit integer*4 (i-n)
real*8 revec(l) ,rsvec(l) ,rstem(l)
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integer*4 imyid(0:5),1i2i (0:5),ipartner(0:5)
integer*4 me,ippro,info,iam

call whoiam(me, idimen,imyid)

————— Initialize accumulation real vector—--———
do 80 ilmsg=1l,lmsg
rstem(ilmsg)=revec (ilmsg)

80 rswvec(ilmsg)=revec(ilmsg)

————— Seek any active processors
do 100 icdim=0,idimen-1

C——--=- Find partner processor -

call equal (idimen,imyid,i2i)

if (imyid (icdim) .eq.0) i2i(icdim)=1
call equal (idimen,i2i,ipartner)
call findpro(idimen,ipartner,ifpro)
ippro=ifpro

call PVMFGETTID ('porwat', me,iam)

if (iam.ne.ippro) then

C++ Sending data to partner processor

~call PYMFINITSEND (PVMDATARAW, info)
call PVMFPACK (INTEGER4,1lmsg,1,1,info)
call PVMFPACK (REALS8,rstem,lmsg,l,info)
call PVMFSEND (ippro, 6872,info)

C++ Receiving data from partner processor

call PVMFRECV (ippro,6872,info)

call PVMFUNPACK (INTEGER4,lmsg,1l,1,info)

call PUMFUNPACK (REALS, rstem, lmsg,l 1nfo)
endif

Cm-——- Find partner processor

call equal (idimen,imyid, i2i)

if (imyid(icdim) .eq.1) i2i (icdim)=0

call equal (idimen,i2i,ipartner)

call findpro(idimen, :|.partner ifpro)

ippro=ifpro

if (iam.ne.ippro) then

C++ Sending data to partner processor

call PVMFINITSEND (PVMDATARAW, info)
call PVMFPACK (INTEGER4,1lmsg,l,1,info)
call PUMFPACK (REALS,rstem,lmsg, 1, info)
call PVMFSEND (ippro,6872,info)

C++ Receiving data from partner processor

call PVMFRECV (ippro,6872,info)

call PVMFUNPACK (INTEGER4,1lmsg,1,1,info)

call PVMFUNPACK (REAL8, rstem,lmsg,1,info)
endif

do 125 ilmsg=l,lmsg
rsvec (ilmsg)=rsvec (ilmsg) +rstem(ilmsqg)
rstem(ilmsg)=rsvec (ilmsg)
125 continue
100 continue
return
end

subroutine whoiam(me,idimen,imyid)
Cmwmn! Define bits nunber of current processors-
implicit real*8(a-h,o-2z)
implicit integer*4(i-n)
integer*4 imyid(0:5) ,ilibpr(0:63,0:5)
common/ifm/ifmecd (2)
cammon/ifd/idomain
idtemp=idimen
————— Construct bits number of all active
do 100 idim=l,idimen
ncheck=(2**idtemp) /2
jdims= (2*%*idim) /2
ipr=1
do 110 kdim=1,jdim
nfac=0
icode=0
do 120 ic=l,2*ncheck
nfac=nfac+l
if(nfac.gt.ncheck) then
nfac=0
if(icode.eq.0) then
icode=1
else
icode=0
endif
endif

ilibpr (ipr-1l,idtemp-1)=icode
ipr=ipr+l
120 continue
110 continue
idtemp=idtemp-1

100 continue

C—mm= Select bits number of current processors-

iam=me-ifmecd(idomain)
do 130 ipr=0,2**idimen-1
if(iam.eq.ipr) then
do 140 idim=0,idimen- 1
140 imyid (idim)=ilibpr (ipr,idim)
endif
130 continue
return
end

subroutine findpro (idimen,inpro,ifpro)
include '../include/fpvm3.h'

implicit real*8(a~h,o-z)

implicit integer*4(i-n)

integer*4 inpro(0:5),ilibpr(0:63,0:5)
integer*4 isum(0:63),idel(0:63,0:5)
integer*4 iftem,ifpro
common/ifm/ifmecd (2)
common/ifd/idomain

idtemp=idimen

lC ————— Construct bits number of all active

do 100 idim=1,idimen
ncheck= (2**idtemp) /2
jdime= (2**idim) /2
ipr=1
do 110 kdim=1,jdim
nfac=0 -
icode=0
do 120 ic=1,2*ncheck
nfac=nfac+l
if (nfac.gt.ncheck) then
nfac=0
if(icode.eq.0) then
icode=1
else
icode=0
endif
endif
ilibpr (ipr-1,idtemp-1)=icode
ipr=ipr+l
120 continue
110 continue
idtemp=idtemp-1

100 continue

Cm—mm= Define bits nunber of current processor--

do 130 ipr=0,2**idimen-1
isum(ipr)=0
do 130 idim=0,idimen-1
if (ilibpr(ipr,idim) .ge.inpro(idim)) then
idel (ipr,idim)=ilibpr (ipr,idim) -
inpro (idim)
else
idel (ipr,idim)=inpro (idim) -
ilibpr (ipr,idim)
endif
isum(ipr)=isum(ipr)+idel (ipr,idim)
iftem=ipr
if ((isum(ipr) .eq.0) .and.
+ (idim.eq.idimen-1)) goto 135
130 continue
135 continue

iffind=iftemt+ifmecd (idcmain)

call PVMFGETTID ('porwat',iffind,ifpro)
return

end
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