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This paper is the extension of a paper in the last issue of this journal, in which the state of the
art of an analytical approach for buffeting response of long-span bridges by complex modes has
been presented. In this paper, the method, which is herein named Aeroelastic Complex Mode
method will be extensively developed in details. The calculation scheme is based on the direct
complex eigen-analysis of the integrated system between the three-dimensional FEM model of
a long-span bridge and the aeroelastic effects. Actual vibrational modes of the bridge in wind
flow, which are called Aeroelastic Complex Modes, thus can be appropriately determined at
each mean wind speed. A Complex Modal Analysis scheme is then formulated for buffeting
analysis in both time and frequency domains. Coupled buffeting responses of the Akashi-
Kaikyo Bridge model is then effectively analyzed by the present method. Further results,
parameter studies and comparison with the conventional buffeting method are provided.
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1. | Introduction

The Akashi Kaikyo Bridge, now the longest suspension
bridge in the world with the main span of 1991m, has
been successfully realized. In the design of the bridge, a
full model test in a large boundary layer wind tunnel has
been conducted, from which many interesting findings
on the dynamic behaviors of the bridge were
experimentally obtained'”. Under the action of turbulent
flows, the full model of the bridge exhibited a strongly
coupled three-dimensional vibration with remarkable
signs of aeroelastic phenomenon. Prediction of such
buffeting responses therefore emerges as a major
consideration in the design of all long-span bridges.

In the past, a couple of methods for predicting
coupled buffeting response of long-span bridges has been
proposed. However, these methods, mostly following
the modal analysis technique, have performed the
analysis using the set of mechanical modes, which mean
the modes of the bridge system determined at no wind
condition. It is obvious that due to the aeroelastic
effects, the mechanical modes are not the actual vibration
modes of the bridge vibrating in wind flows. Such
analyses are therefore rendered much complicated by
mathematical formulations or transformation techniques
to incorporate the aeroelastic effects.

In this regard, the Direct FEM Flutter Analysis
Method by Miyata and Yamada® (1988), and one of its
developments - the Mode Tracing Method by Dung et
al.? (1996) for flutter prediction could provide a better
representation of the dynamic behaviors of long span
bridges in term of complex modes. Complex -eigen-
analysis is directly made for an integrated system

consisting of the 3-D FEM model of a full bridge and
the aeroelastic effects caused by the wind flow, resulting
in the complex modes, which are apparently the actual
vibrational modes of the bridge in wind flow. The
effectiveness and importance of the complex modes in
predicting the flutter wind speed and flutter mode shape
of long span bridges have been well confirmed and
reported (Miyata et al.'® 1995, Dung et al.> 1997).

In this study, an approach for buffeting analysis of
long-span bridges using the complex modes is
developed. The state of the art of the approach has been
presented in a paper in this journal last year (Minh et
al.” 1998). However, there remained a couple of points
in the formulation, which needs to be clarified and
proved. In this paper, the method will be extensively
presented in details to provide a step-by step formulation
for ease of following and programming. The complex
modes are herein re-named aeroelastic complex modes to
indicate the fact that the aeroelastic effects are inherently
incorporated. By employing the Mode Tracing Method?,
the aeroelastic complex modes at a certain wind speed
can be obtained. The modal decomposition then can be
made straightforward by a complex modal analysis
scheme. A comparative consideration in the frequency-
domain formulation is considered in terms of the cross-
terms of the modal-force spectral matrix, and then their
effects on the buffeting response are investigated.

Further new results on the coupled buffeting of the
Akashi Kaikyo Bridge model with refined input data are
presented and interpreted. A check on the effects of the
Von-Karman coherence on the response, and comparison
with the conventional buffeting method by Davenport?
(1962) are extensively carried out.
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2. Complex Modal Analysis
2.1. Complex Eigen-Analysis

The Direct FEM Flutter Analysis® formulation and the
Mode Tracing Method® are employed for complex eigen-
analysis. The equation of motion of a full-model bridge
in the presence of aeroelastic phenomena can be
expressed as,

Mu+Ci+Ku=F, +Fy Q)

where M, K are mass and stiffness matrices formed by
Finite Element method, u is displacement vector, F,, is
the motion-dependent self-excited force depending on
reduced frequency K=wB/U (m is circular frequency and
U is mean wind speed), and F, is the buffeting force.
Other notations are depicted in Fig.1.

Lift
Moment Vertical
w(t) Torsional y
o Drag
- __Horizontal
U u)

Fig.1 Sectional model of bridge deck

Assume harmonic oscillation, f,., which is the self-
excited force for a section of bridge deck with unit length
in local coordinates, can be expressed following Direct
FEM Flutter Analysis” formulation as follows,

L, ¥
f,=1 D. (=F z t=Fw [0))
M_/B oB

where w is displacement vector in local coordinate, in
which y, z, and o is vertical, horizontal displacement
and rotational angle as depicted in Fig.1; and

L+il, Lg+il, Lg+il,
Fw = "'(pTCBZ) DyR + iDyI DzR + iDzI DmR +iDed A3
M, +iM,; M,+iM, M, +iM,

in which L., D,, M, are aeroelastic lift, drag and
moment respectively; p is air density; F, contains a full
set of 9-complex unsteady coefficients™'® (or
equivalently®® 18 flutter  derivatives®),  which
exclusively depend on reduced frequency K. The local f,,
distributing along the bridge deck can be lumped for each
section to concentrate to each shear node. The local nodal
forces, which is expressed in' Appendix A, then can be
transformed into the global coordinate through FEM
scheme, and assembled to form the global self-excited
vector F,,, which can be expressed by,

F, = 3 x(F, %) = Fii @

where the operator x(.) indicates the transforming
process from local to global coordinate and the sigma
sign expresses the assembly process in FEM scheme for
n elements. As the results, F,. is function of the global
acceleration vector 1 so that it can be integrated into the
left-hand side as an additional complex mass. Neglecting
the damping matrix C, Eq.(1) can be rewritten as

(M-F,))ia+Ku=F, (5a)
or,
M,i+Ku=F, (5b)

The term F; can be dropped for the eigen-analysis of the
system. Assume harmonic response for the free vibration
of u with complex frequency A,

u=Ae™ (62)
from which,

il = -NAe™ (6b)

Then the equation of complex eigen-problem is formed,

det|K ~ M (K)x X’| =0 (Ta)
®B
where K= TJ_ (7b)

in which the modal frequency ® is the module of a2
(square-root of the complex eigenvalue). In Mg, the self-
excited force is integrated. Therefore Mg is a complex
function of the reduced frequency K, which depends on
wind speed U and the unknown modal frequencies ®.

To solve the complex eigen-problem in Eq.(7) to
obtain a set of aeroelastic complex modes at a certain
wind speed U, the Mode Tracing Method is employed.
Details of the method can be found from Dung et al.?
(1996). However, for ease of programming, the
procedure of the method is recast and introduced in
Appendix B. The method considers only one mode at a
time and then traces the evolution of the modal
properties with step-by-step increase of wind speed. The
modal properties of every mode are therefore determined
at the same wind speeds, which can be specified by the
analyst. A simple application of this method for a set of
aeroelastic modes at a desired wind speed U is to trace
mode by mode from U=0 to the desired wind speed to
collect the result; and such a procedure can be repeated
for all interested wind speeds. However, if the number of
interested wind speeds is decided, the procedure to obtain
their sets of aeroelastic complex modes can be made
much faster by only one-time tracing mode by mode
from. U=0 to the maximum interested wind speed. The
wind speed steps are chosen coinciding with the
interested wind speeds so that their aeroelastic modal
properties can be evaluated and collected in the process of
the method. An example can be seen from Fig.4. The
modal aerodynamic damping and modal frequency are
traced successively at 20 specified wind speeds, ranging
from 5 to 100 m/s, including eight interested wind
speeds of 30, 36, 44, 54, 63, 71, 76 and 80 m/s. The
sets of aeroelastic complex modes at the eight interested
wind speeds thus can be obtained by appropriately
collecting during the calculation process, and storing in
the memory for later use.
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2.2. Uncouple Equation of Motion

The modal decomposition for Eq.(Sb) at a certain wind
speed then can be performed by using corresponding
eigenvectors. Since My is complex and not symmetric,
two biorthogonal sets of complex eigenvectors, left v
and right v, exist for the modal decomposition. Note
that the results from the Mode Tracing Method are only
the complex eigenvalue A’ and the right eigenvector

Vge» Which are resulted from,
Kvg, = }\’anFan (®)

This equation is equivalent to Eq.(7a). The left
eigenvector will be the solution from,

Kv,, =AM, ©)

Note that since the determinant of a matrix is equal to
that of its transpose, it follows that a matrix has the
same eigenvalue as its transpose. Then the eigenvalues
in both Eqgs.(8) and (9) for a mode are the same. The left
eigenvector therefore can be easily obtained along the
process of the Mode Tracing method as long as the
corresponding eigenvalue is available. It is worthy to
note that the left and the right eigenvectors will be
identical at U=0, at which the matrix My is symmetric,
to become the mechanical mode shape. As wind speed
increases, these two eigenvectors will gradually change
into quite different shapes to each other, as typically seen
on Fig.2. Transpose of Eq.(9), making use of the
symmetry of K, yields,

vi K =N, v M, (10)

Post-multiply both sides of Eq.(10) with a right
eigenvector, and pre-multiply both sides of Eq.(8) with
the transpose of a left eigenvector give,

vmean = ?\'va.{mMFan
€3))

T — 92T
vLmKVRn - xnvLmMFan

from which the bi-orthogonality of the left and right
eigenvectors with respect to Mg and K is proved,

YK Vo, =0 if m (12)

fm#n .

vi.M,v, =0

To facilitate the modal decomposition, the left and the

right eigenvectors are normalized in such a way that,
VinVea =1 13)

The modal decomposition for Eq.(5b) now can be made.
The uncoupled equation of motion in generalized
coordinate r can be written as,

(VI M;v,)r+ (VIK Ve )r = VI F, (14)
where u=vVyr (15)

By Eq.(12), the uncouple equation Eq.(14) can be
written as,

{
P +Mr =-t
I’n nrn m (16)

n

where,

modal mass m, =v; Myv,, (17a)
modal stiffness k,=mN\, =v{ K v, (17b)
modal force fu = VLF, (17¢)

The relation between modal stiffness with modal
mass and eigenvalue in Equation (17b) is resulted from
Eq.(11). From Eq.(14), it can be seen that the left
eigenvectors decide the contribution of external forces to
each mode, whereas the right eigenvectors express the
mode shapes. By their biorthogonality, the equation of
motion can be uncoupled as in Eq.(16). However, the
stiffness or frequency in this equation is still complex.
The square of complex frequency (or eigenvalue)
A’ implied the existence of a frequency phase lag
representing for the aerodynamic damping in the
vibration, which makes the Eq.(16) difficult to be solved
by a common technique of dynamic analysis. Therefore,
further derivations should be made to extract the modal
damping and modal frequency explicitly in real values.

Write the complex frequency (square root of the
complex eigenvalue) into its real and imaginary parts,
Ay = Ay +iA,,, where i=+/-1, and consider the second
term of the left hand side of Eq.(16),

A’znrn = (}‘Rn + ixln )2 I'n
= [Woy + A5 + 2R i, +iA)]r, (18)

From the harmonic motion assumption in Eq.(6a) and
the transforming Eq.(15), the following relation holds,

I, =ih L, =i(A,, +ik )1, 19)
Substitute Eq.(19) into Eq.(18),
)\‘ann = (}\‘zkn + A‘21n )rn + 29\‘1ni'n (20)

By this new expression of the second term, Eq.(16) can

be rearranged in a more convenient and explicit form as,
'I:n + 2’&a\eno‘)nfn + (‘oirn = an (21)

where normalized buffeting force Q,=f;, / m,. The modal

aerodynamic damping ratio &,,, and modal frequency ®,
here are real values as follows,

0, =N 48 Ew=h R +h @)

At this stage, under the assumption of proportional
damping, the structural damping can be incorporated in
the form of modal structural damping ratio &,. The final
form of the uncouple equation of motion then is

i +26., +8a)0,L, + o1, =Q,, 23)
or,
.I:n + 2gn('onfn + m:rn = an (24)

in which &, is the total modal damping ratio. In Eq.(24),
the general coordinate r,, together with its derivatives and
the normalized modal force Q,, are complex, but the
modal damping and modal frequency are already expressed
explicitly in real values, which makes it easy to solve
the equation. The most important advantage of this
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equation of motion (24) when compared to those of other
existing method® is that it is completely uncoupled at
a mean wind speed, so that it can be flexibly solved in
either time or frequency domain. This advantage is
thanks to the use of the aeroelastic complex modes, in
which the aeroelastic effects have been incorporated.

3. Time Domain Analysis

The wind field can be modeled as comprising of a mean
wind speed and turbulent components as seen in Fig.1.
By the quasi-steady assumption™, the buffeting force
F,, can be computed from horizontal (u) and vertical (w)
turbulent velocity components as follows

L, 2C, (C.+Cy)

B L . D u(t
F= D, ;= ——2— 2C, (O {w((t))} (25)
M,/B 2C, Cy X

where L,, D,, M, are buffeting lift, drag and moment,
respectively. C,, Cp, Cy are static coefficients for lift,
drag and moment, respectively. The prime (') denotes
their derivatives with respect to the angle of attack of the
mean wind speed on the section model (Fig.1). Values of
these coefficients at the mean angle of attack o, are used.
The context of the approach thus involves the work of
numerical simulation of turbulence u(t) and w(t). Details
of this work can be found in Minh et aL.? (1997).

The buffeting analysis is then carried out by
Newmark direct integration method for Eq.(24). The time
history of the generalized displacement r in modal space
is obtained, and then can be transformed by Eq.(15) into
the time-histories of physical displacement responses,
including vertical, horizontal and torsional components
at any node along the bridge deck. The RMS and
ensemble average of maximum amplitude of the
responses then can be evaluated directly from the
response time-histories.

It is noted that for N modes, Eq.(24) is equivalent to
N complex equations. Each complex equation can be
considered as including 2 separate equations, one real and
one imaginary. The direct integration therefore, in
principle, should be made for totally 2N equations.

However, for the uncouple equation of motion Eq.(24), -

all operations in the direct integration are linear for
coordinate r and the normalized buffeting force, so that
the integration can be made directly on the N complex
equations with complex variables.

4. Frequency Domain Analysis

Denote the Fourier Transform, e.g. for the generalized
coordinate r by,

T, =[re™dt (26)
0
Then the equation of motion in frequency domain can be
expressed as,
(-0’ +28 0,0+, =—TF, en
or in matrix form, _
Er=Q, (28)

Apparently, the impedance matrix E here is completely
diagonal. The general term is

E, =-0"+i(28,0, )0+ o} 9)

In general, there are two ways to solve the set of
uncouple equations of motion in frequency domain:
Multi-degree-of-freedom (MDOF) spectral formulation or
Single-degree-of-freedom (SDOF) spectral formulation.

4.1. MDOF Spectral Formulation

The MDOF spectral formulation develops the whole set
of equations of motion simultaneously by its matrix
form of Eq.(28) into the spectral form using standard
random vibration analysis for MDOF system The
hermitian transpose of Eq.(28) is,

rE* =Q; (30)
post-multiplying Eq.(30) to Eq.(28) yields,
EFF'E'=Q,Q; 31)

from which the PSD matrix for the generalized
coordinate r can be developed and expressed by,
-1

S,(@) = E7Sq,q [E”] (32)
where S, is the power spectral density (PSD) matrix
for modal buffeting force. The generalized response r can
be obtained in term of its PSD matrix S.(®) by solving
Eq.(32), as long as the PSD matrix of the modal
buffeting force is available. There existed a developed
form of the PSD of modal buffeting force by mechanical
modes in real number for bridge analysis in Jain et al.”
(1996). However, since the aeroelastic modes here are
complex and separated into left and right eigenvectors,
necessary derivations consistent with complex modal
analysis must be made.

Let yi(x), z,(x) and oy, (x) are respectively the
vertical, horizontal and torsional components of the
complex left eigenvector of n™ mode at span location x.
The complex modal buffeting force can be expressed as,

M. (t
"B( )%}ix (33)

then its Fourier Transform into frequency ® domain at

span location x, is,
M (0
‘i3 )oan(x A)}x

(34)
Make Fourier Transform for Eq.(25), then substitute the
Fourier transform of buffeting force into- Eq.(34), one
obtains,

£.(0= T[Lba)ym +D,(t)z,, +

f‘hn (XA’O)) =

L

[ E@ya D@+

0

f (x,,0)= -;—pUBTQ(xA,(o)dx (35)
where
Q=2[C,y, (x,)+Cpz,,(x,)+Cyo, (x,)]u(w) +
[(Ch +CL)yL (x,) +Cozpy (x,) + Chytt, (x,)[F()

The following matrix equation then can be obtained for
N complex modes, where n and m are index of modes,
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— — 1 : | G
anQ:m S(EpUB) X m* .([.(J;fbnfbmdxAde (36)

from which the power spectral density (PSD) matrix can
be developed. The asterisk denotes the complex-
conjugate operation. The general term of the PSD matrix
of the modal buffeting force then can be written as,

pUB 1 &
Sobnc‘dm(m) ( J e !!‘P(XA,XB,O))dXAdXB (37
where
‘P(xA,xB,(o)={q (xA)qm(xB)S (xA,xB, )
(x *(x Bunltyty0)
n m\ B/ ww\ A’ B
+[(~1 (x )E* (x ) x *(x ] G co
n\ A/ m Al 'm B uw
+i[€1 (x, e (xg ) =5, (x, i (x )] (x X co)}
n\ A/ m A/ 'm\ B uw
L is bridge's length; x,, x5 are span locations; S,,, Sy,
S, are respectively uu-cross-spectrum, Ww-cross-
spectrum and uw-cross-spectrum between 2 points x, and

Xp5 Suw=CuwtiQues with C, being cospectrum and Q,,
being quadrature spectrum; and

3, (x) = 2[CLy ., (x) + Cpz,, (x) + Cpyty, (%)]
§.(x) =(CL +Cp )y, (%) + Cpzy (%) + 00, ()

(39a)
(39b)
With the PSD matrix of buffeting force by Eq.(37), the
PSD matrix for generalized response S, can be solved by

Eq.(32). To turn to physical response u, develop Eq.(15)
into spectral form,

Su = VS, Vy (40)

Then, the PSD for physical displacements at span
Jocation x are

S,y (%,0) = X 2 Y10 (%)Y 1 (X)S 0 (@) (41a)
Sa(%,0) = X X2, (X)24n (X)S () (41b)
Saa (%,0) = X X B0, (%) (X)Sm (©)  (410)

where yp (X), zZg (X) and Og,(x) are respectively the
vertical, horizontal and torsional components of the right
eigenvector of the n™ mode at span location x.

The mean-square values of buffeting response then
can be evaluated by taking the integration of the physical
displacement PSD with respect to frequency f=w/2m,

G: (Xas XB) = J.Syy (X4> X5 fHdf (42a)
0

02X, %) =[S, (x,,%,,)df (42b)
0

O (X5 X;) =[S, (X0 X, ) (42c)
0

The covariance matrices for y, z and o are then obtained,
from which only the variance terms, which are calculated
by x,=Xg, are necessary since they indicate the mean
square of responses at different location along the bridge
deck.

The expected values of the maximum vibrational
response occurring in the time interval T is (Davenport”
1962),

Poa (X) =K, (x)0,(x) (43)

where p stands for y, z or o displacement component; G,
is the root-mean-square of p-component response; k, 1s
the respective peak factor, which can be estimated as

k,(x) = [2Inv(x)T]"* + [%%%ZFW (44)
in which
oS, |
V(x) = L (45)

Jspp(x £)df

S,p(x,f) is calculated from Eqs (41a,b,c) with @ replaced
by real frequency f. In the statistic sense, the expected
maximum vibrational amplitude in Eq.(43) can be treated
equivalent to the ensemble average maximum amplitude
in the time domain analysis for comparison.

4.2, SDOF Spectral Formulation

The SDOF spectral formulation develops each modal
equation (27) into spectral form separately following the
standard random vibration analysis for an SDOF system,
and then solves for the physical responses’ spectra and
RMS induced by the mode. The SDOF spectral
formulation therefore can be deduced from the MDOF
spectral formulation as a special case in which the cross-
terms of PSD matrix of the modal buffeting force are
neglected. The procedure for SDOF spectral formulation
is then similar to the MDOF spectral formulation with
following two revisions,

(a} The PSD matrix of modal buffeting force is
diagonal, then Eqs. (37), (38) are revised as the general
term for the diagonal elements as follows,

(82 sy, o
\P(XA’XB’(D) - {qn(xA)ﬁ:(xB)Suu(xA,xB,w)

* §n (XA)?:(XB)SWW (XA’XB’(D)
+[qn(xA)§:(xB)+§n xA)qtl(xB)]Cuw(xA’xB co) (47)
2 CRCN LN B o LN S TR

(b) The PSD for physical displacements at span
location x are

S,,(x,0)= ;ym(X)yLn(X)Sm (w) (482)
8.(0®) = Y24, (x)24,(x)8S e () (48b)
8o (X, 0) = ;B‘zah(X)a;n(X)Sm(m) (48¢)

It can be seen that such a reduction of PSD matrices
to diagonal forms will greatly reduce the computational
effort in a quadratic order. The next question is how the
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cross-terms affects the results. A parameter study for this
effect is presented later.

Like the previous paper”, following assumptions in
the formulation remain: (a) Quasi-static assumption is
for buffeting force so that the aerodynamic admittance
functions is unit; (b) Strip assumption” holds for the
spatial correlation of the buffeting force along the deck;
and (c) Changes of the mean angle of attack along the
deck and the large static displacement due to mean wind
speed are neglected.

5. Coupled buffeting of the Akashi
Bridge model

Kaikyo

5.1 Turbulence characteristics

(a) Fitted wind-tunnel turbulence properties by direct
statistic analysis of turbulence record: The time-history
records of turbulence generated in wind tunnel for the
full-model test of the Akashi Kaikyo Bridge are directly
analyzed, and then generalized into analytical close-forms
of statistical properties. The scaled (from model to
prototype scale) spectra and point cospectrum of the
turbulence can be expressed as,

£S,() _ S.1If, £S,()) _ 6.15f,
w o (1+7.056)"° w1435
fCo, () = —15f, ‘

YT “)

where U’ is mean square of horizontal gust component
(u). Compared to the set in the previous paper”, this set
is more general by using the normalized frequency f, =
fz/U, where z is the height. The coherence functions can
be expressed in our proposed forms as follows,

Coh, ,. (f) = C;(dx)exp(—f C,dx/U) (50)
Coh,, (1) = C; (dx)exp(~f C}dx/U) 51)
Coh,, () = 0.5 [Coh, , () +Coh,, ()] (52)
where C! =12, C] =8,

C;(dx) = (1-0.001dx — 0.0003dx*)

(53)
Cy (dx) = (1-0.03dx + 0.0002dx*)

(b) Reported target turbulence properties: following

turbulence properties have been reported as the targets of

the wind-tunnel turbulence simulation of the full model

test (see Katsuchi? 1997). Hino spectrum holds for S, as

follow,

£, (f £/
2O _g4751 Bz - .
u {1+¢18y}
aK U 7 (2m-3)a-1
where, B=0.01718_£3_10_(E)

o = 1/8; K, = 0.0025; I, is turbulence intensity, m=3 is
an empirical factor, U,, is mean wind speed at the height
of 10m. The auto-spectrum S,, is following the Busch
and Panofski form as follow,

£5:(0) _ g 6300 e/ T
w? 1+ 15(f, /)

m;

£/f

max

(53)

where f, = f z/U,, f,,=0.4 is an empirical factor. The
Von Karman spatial coherence has been reported to agree
very well with the measured coherence. However, its
analytical forms are so complicated for engineering use.
A modified form for these coherence functions have been
employed by Katsuchi® (1997) as follows,

Coh,, (f,dx) = exp{—E—B—‘%\/l +(2n/B,)*(fL/U)? }
T

(56)
in which I=L’=70cm for Coh,,,;; L=L%=40cm for
Cohy,wps B;=0.747; and decay factor c=8. Note that all
the coherence function here is defined in its square form.

5.2 Aeroelastic coupling in the response

The buffeting of the Akashi Kaikyo bridge model is
analyzed by the present method with the fitted turbulence
properties at eight wind speeds: 30, 36, 44, 54, 63, 71,
76 and 80m/s. Other data are similar to those of previous
paper”: turbulence intensity 1,=9.6%, 1,=6%; the flutter
derivatives and static coefficients for the modified cross-
section at zero angle of attack are used; modal structural
logarithmic decrements are 0.03; number of modes is 32;
frequency step is 0.001Hz; time step is 0.1s.

Thanks to refined data and programming techniques,
the agreements between calculated and experimental
results, which have been reported in the previous paper”,
can be seen better via Fig.6b for the frequency domain
and Fig.7 for the time domain analysis. A comparison of
response spectra at 76m/s is shown in Fig.3. Very good
similarity between those from time and frequency
domain analysis with the measured ones'” are obtained.
Similar results are also obtained at other wind speeds®.

Fig.2 extensively shows the evolution of the motion-
coupled modes #9 and #10 from their mechanical modes
at U=0 to higher wind speeds. The most interesting
feature in these evolutions is the appearance and
development of the vertical component in the modes,
mainly on the right eigenvector, which makes the
vertical response spectrum evolves spectacularly with
wind speeds as seen in Fig.5. Such evolution makes the
response become strongly 3-motion - coupling,
represented by PSD’s peaks for all response components
at the same modal frequency, especially at #10, as
observed in Fig.3. It is interesting to note that although
evolving to a smaller extent than the mode #10 at low
wind speeds, mode #9, the 1st torsional mode, is quickly
enhanced at high wind speeds and develops to flutter
instability. These developments are indicated by the
evolution of aerodynamic damping, as shown in Fig.4.

In modes #9 and #10 (Fig.2), the development of
vertical components are only in the right eigenvectors,
whereas the left still basically keeps almost unchanging,
except the appearances of imaginary components. In the
meaning of the right eigenvector, representing the mode
shape, and the left eigenvector, representing the modal
force, it can be interpreted that in these modes, all the 3
motions of the bridge deck are excited by only drag force
and moment. A closer look reveals that the vertical
motion is mainly excited by the moment. This relation
is dictated by the unsteady coefficient L,, which is the
coefficient for ‘aeroelastic lift induced by rotational
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response’. The vertical component appears in the mode
shapes therefore can be interpreted as the aeroelastic
effects, mainly governed by the unsteady coefficient L.

5.3 Cross-terms effects

As mentioned, the only difference of the MDOF from
the SDOF spectral formulation is the cross-terms of the
modal buffeting force PSD matrix Squq,. The MDOF
spectral analysis is quite sophisticated and very time-
consuming, while the SDOF spectral analysis is much
simpler and requires very small computational efforts.

A comparative checks of the effects of the cross-terms
is made and presented in Figs.6a and b. Fig.6a shows the
effects on the response spectra at relatively high wind
speed of 76m/s. Notable, however small, differences
between results of the two MDOF or SDOF spectral
analyses can be seen especially for closely-spaced modes.
The vertical spectrum is therefore the most affected by
this effect. Less effect can be seen for torsional
spectrum, whereas almost no effect is obtained for the
horizontal spectrum. More comparisons at other wind
speeds can be found in Minh® (1998) indicating that the
extent of the differences is more pronounced at higher
wind speeds. A general look at the effects can be
achieved by Fig.6b, which shows the effects on the
RMS and the average maximum amplitude (AMA) at a
wide range of wind speeds. Very small differences are
obtained for all response components. The vertical
response, however, shows notably larger differences at
higher wind speeds. The maximum errors obtained at
80m/s are 7.8%, 0.7% and 1.2% for vertical, horizontal
and torsional response respectively.

Therefore, it can be concluded that for the analysis in
frequency domain, the SDOF spectral . formulation,
which is more conventionally used, is still effective
enough for this case. Use of SDOF spectral formulation
will significantly reduces the computational efforts and
many complications in formulation and programming.

$.4 A parameter study on turbulence inputs

The effects on the response by the differences between
the fitted properties of the wind-tunnel turbulence in the
full model test and the natural turbulence properties from
literature have been pointed out in the previous paper”.
It has been pointed out that the use of Davenport’s
coherence function greatly overestimates the horizontal
response observed in the full model test.

In this paper, a parameter study is made for the
reported target turbulence properties. Fig. 7 shows the
comparison of results between the default case (a) ‘fitted
wind-tunnel turbulence properties’ and case (b) ‘reported
target turbulence properties’ as presented in Sec.5.1. The
vertical and the torsional response from both cases well
agree to each other. The horizontal response. of case (b),
however, is still around 2 times higher than that of case
(a). This result was also reported by other works using
this set of turbulence input (Katsuchi®).

The main reason can be seen in Fig.8a, which shows
the comparison between spatial coherence from both
cases. It can be noted that the modified Von-Karman
coherence, although a little bit smaller than the wind-
tunnel coherence for small distances, still higher than the
wind-tunnel coherence for a far distance, such as

dx=50m. Fig.8b gives a clearer representation for this
note. This figure shows the comparison of coherence
values versus separate distance at the frequency f=0.039,
which obviously influences directly on the horizontal
response since this response is dominated by mode #1 of -
around f=0.039Hz. It can be seen clearly that the
modified Von-Karman coherence overestimates the wind-
tunnel coherence for a far distance, and this
overestimation continues very far following the
exponential form. On the contrary, the wind-tunnel
coherence appears to decrease and vanish very quickly,
say, after 56 m for u component. For a very long span
bridge, the coherence for very far distance, however
small, still plays an important role to affect the response
of the first mode. That is the reason why the modified
Von Karman, though better fitted to the wind-tunnel
turbulence, still makes the calculated horizontal response
higher than experimental one.

These interesting results prove the effectiveness of the
idea of using the fitted wind-tunnel turbulence properties
by direct analysis of turbulence records as input for a
good match with the condition in the wind tunnel, rather
than accepting the ready-made turbulent properties for
calculation.

6. Comparison with Conventional Method

The conventional method in frequency domain, which is
sometimes called ‘Admittance method’ or ‘Admittance
Single-mode method’, was developed by Davenport?
(1962), making use of the well-developed theory of
spectral analysis for random vibration. The method is
applied one-by-one for each chosen mechanical mode,
and then the response spectra of many modes are
summed to get the total response spectrum. There is
neither concept of aeroelastic effects nor coupled
response. The modal logarithmic decrements due to the
modal aerodynamic damping are determined by very
simple formula based on quasi-static theory as follows,

57 < _l_pUCLB

r

! 2

5t = 1pUC,B 5 = lpUCMB
4 nmk

&7
where 6;,6;,0, are logarithmic decrements for vertical,
horizontal and torsional modes respectively, n,: frequency
of r™ mode, T™: mass per unit length, k: radius of
gyration. It can be seen that these acrodynamic dampings
are linear with wind speed. More details of the method
can be found in Davenport? (1962).

A comparison of this conventional Admittance
Single-Mode (ASM) method and the presented
Aeroelastic Complex Mode (ACM) method in frequency
domain is made. The differences of the ASM method
from ACM method can be resumed as follows,

+ Using the set of mechanical modes

+ Following SDOF spectral formulation for analysis,

similar to the formulation in Sec.4.2

+ Formulating the aerodynamic dampings by the

quasi-static assumption as Egs.(57)
The buffeting responses at the mid-span of the main
span of the Akashi-Kaikyo Bridge model are calculated
by both methods under the same condition of the fitted
wind-tunnel turbulence inputs (Sec.5.1a). As experienced
from a parameter study in the previous paper”, there are

4 nm 2 nm
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five significant modes for the response at the mid-span
of the bridge, which yield reasonable results for ACM
method. Their mechanical descriptions are as follows.
Mode #1 is the 1st horizontal mode; Mode #2 is the 1st
vertical mode; Mode #8 is the 3rd vertical mode; Mode
#9 is a coupling mode between the 1st torsional and the
3rd horizontal; Mode #10 is also a coupling mode
between the st torsional and the 3rd horizontal but in
opposite sign. Then, for both ASM and ACM methods,
these modes are selected for calculation in this section.

Fig. 9 presents the comparison of response spectra
from the two methods at the wind speed of 63m/s. A
common difference is that all the peaks from ACM are at
smaller frequencies than those from ASM are. Therefore,
due to higher values of turbulent spectra at smaller
frequency, the amplitudes of ACM’s peaks are higher
than those of ASM’s peaks are. In the vertical spectrum,
the ASM result does not have peaks at frequency of
modes #9 and #10 as well as their evolutions with wind
speed like those in ACM results. This is because these
vertical responses at mode #9 and #10 are due to
aeroelastic effects, which can not be captured by the
ASM method. For horizontal response, since mode #1,
which is actually not so much affected by aeroelastic
phenomena, exclusively dominates the response, very
good agreement between the two methods is observed.
For torsional response, the ASM method very much
underestimates the response due to its overestimation of
the torsional aerodynamic damping. It is noted that
compared with aerodynamic damping computed by
complex mode method (Fig.4), the aerodynamic damping
estimated by Eq.(57) gives very fair results for vertical
and horizontal motions, while yields very much over-
estimated results for torsional motions?.

Fig.10 shows the comparison of the RMS of the
responses from the two methods at eight wind speeds.
The comparison reflects very well the observations in
Fig.9. The ASM method underestimates the vertical
response because it can not capture the vertical response
at mode #9 and #10. As wind speed increases, the
aeroelastic phenomena is more pronounced, making the
vertical response by ACM method increase quickly due
to the development of aeroelastic couplings at mode #9
and #10, as seen in Fig.5. The discrepancies between the
two methods thus increase as well.

Nevertheless, the ASM method, attracted by its
simplicity, could be used at the preliminary stage of
design. The expected errors are that it would
underestimate vertical response especially at high wind
speeds; very much underestimate torsional response; and
give fair result for horizontal response. Assumption of
zero torsional aerodynamic damping is recommended for
conservative results as also seen in Fig.9.

7. Concluding Remarks

The buffeting analysis by complex modes, which is
called Aeroelastic Complex Mode method has been
extensively presented with detailed formulation. The
versatility of the method, which is capable to solve the
coupled buffeting in both time and frequency domains
with clear representation of the dynamic behaviors of
long span bridges in term of aeroelastic complex modes,
could benefit much for further sophisticate problems for
bridges such as vibration control, etc.

A further parameter study on turbulence inputs,
mainly on the effect of the use of the modified Von
Karman coherence, has revealed its potential of
overestimating the full model’s horizontal response. The
parameter study has also proved the effectiveness of the
fitted wind-tunnel turbulence properties, especially the
fitted coherence function for the buffeting of full model
of the Akashi Kaikyo Bridge. A detailed look into the
frequency domain spectral formulation was provided,
from which the conventional and simple SDOF spectral
formulation could be proved still effective enough.
Lastly, a comparison with the conventional buffeting
method not only confirmed the effectiveness of the new
method, but also gave suggestions of how to use the
conventional method for the early stage of bridge design.

As the results, a better understanding on the coupled
buffeting of long-span bridges is achieved, which
effectively explains the observed dynamic behaviors of
the full model of the Akashi Kaikyo Bridge in wind
tunnel. These investigations, including those in the
previous paper”, prove the effectiveness and accuracy of
the new method, which is suggested to be used for
buffeting analysis of long-span bridges in future.
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Appendix A: With the self excited force by Eq. (2),
the corresponding force vector at each of shear nodes A
or B in the local coordinate xyz (Fig.11) is

fx 3 co. l i.ix 1
y Laﬂ ﬁy
D i
z = ae = 1 BZFL . z
<mx/B> M_./B P, “’<¢XB (AD)
m, /B ¢,B
mZ/B‘ Lo H‘)zB
where
0 0 0 0 0 0]
0 Ly+il, Li+iL, Lg+iL, 00
B = 0 Dy +iD, D, +iD, D, +iD, 00 a2
Y |0 M, +iM,; M +iM, M +iM, 00
0 0 0 0 00
10 0 0 0 0 0]

Y
fA
m* A
" P ’Fm"‘z_ Beam element
X fA
7 X

Figure 11 Beam element
where 1, is the element length. The right hand side vector
is the nodal accelerations corresponding to the nodal
forces in the left hand side, which are depicted on Fig.11.

Appendix B: Procedure of the Mode Tracing method

INITIAL CALCULATION

1. Form mass matrix M, stiffness matrix K of the
bridge structure by FEM

2. Perform eigen-analysis for the bridge structure (at
U=0) by

det|K —2,M]|=0

to obtain the set of mechanical modal properties,
including eigenvalue A% and mode shape v,
which serve as initial value of the iteration.

FOR EACH MODE

A. [Initialize

a. Initialize corresponding A} and v, which mean the
eigen-properties at U=0

b. Choose wind speed step AU. The iteration is
started from U = AU

B. For each wind speed step
_(Outer loop - step index: ...,U-AU,U,...)

a. Initialize
1. Approximate eigenvalue and mode shape
2 _ 82 . —
}“u.o - 7“U-AU’ vU.o - VU—AU

2. Trial value of the modal frequency
Wyo = Dy gy =M +A, where A, +ik; =X

b. For each trial yalue of modal frequency
(Inner loop - step index: i=1,...)
1. Calculate the trial value of K;
Ky;i= 0,,,B/U
2. Evaluate the unsteady coefficients at Ky
3. Flutter Equation (7a) is formed for the target
mode at wind speed U
det]K — 2, M, (K,,,)| =0

4.Solve the eigen-problem by the power method
with inverse iteration and shifting eigenvalue
“technique to obtain A, and vy, ‘

1 2
I:O\'z %) (K - }"U,HMF) -M; :lvu,i =0
vi ~ Mo

where previous value A3 is a shift to make the

target mode dominant
5. Confirm the similarity between the newly-

calculated mode shape v, with the previous v,

to keep accurate tracing direction

6. Compare the newly-calculated eigenvalue A,

with the previous A%,

+ if the error is not acceptable, re-initialize the new
g, by

Oy; = YA +A, where A +ik, =N,

or by extrapolation with the secant line technique
from previous solutions for faster convergence. The
iteration then return to step 1 for the next step of i
+ If the error is negligibly small, take the solution
at wind speed U,
Ny =Ry
and calculate corresponding aerodynamic damping,
A
By =2 —pmaer
Rt

Vy = Vy,

where A +ih, =4/AL

then go to the next step of wind speed. If wind
speed reaches a specified maximum value, stop

tracing the mode.

General rule of notations;

Aw,i
where,

- Subscript ‘w’ stands for the outer loop of wind speed
. Current windspeed: w=U
. Previous wind speed: w =U-AU

- Subscript ‘i’ stands for the inner loop, i=1,...
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