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A three-dimensional simulation model based on the discontinuum modeling method is necessary in
order to analyze brittle materials in general stress states more accurately. In this study the linkage
element model is used for numerical simulation of the failure behavior of concrete and the damage
estimation. The advantage of this approach in the failure simulation of brittle materials is that the
internal failure mechanism is clarified by the deformation and the internal mechanical state of each
element. Numerical simulation is done to analyze the three-dlmensmnal failure behavior of concrete

subject to uniaxial compression.
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1. Introduction

There are two main approaches on the failure
simulation of concrete: the continuum modeling
represented by the finite element method (FEM) and the
discontinuum modeling such as the distinct element
method (DEM). The FEM is widely implemented in the
analysis of concrete structures, but its inherent nature
makes it difficult to model cracking behavior of concrete.
On the other hand, the discontinmum modeling method
can properly model cracking and failure of brittle
materials such as concrete. For examg)le the lattice model
was introduced by Schiangen et al."” while 2D interface
element model was developed by Tsubaki® and Abdeen
et al¥ In order to properly analyze the multiaxial state of
stress and deformation it is necessary to employ a three-
dimensional model. Therefore, a three-dimensional
discontinuum mechanical model using linkage elements
with an interface in an element is developed in this work
and is applied to the analysis of the failure behavior of
concrete. The present modeling is aiming at the
development of an analysis tool for unreinforced brittle
materials of the standard specimen size.

2. Three-Dimensional Linkage Element
Model

For the three-dimensional analysis of the failure of
brittle materials a 3D linkage clement model (LEM) is
developed. Concrete is modeled as an assembly of
linkage elements with two nodes. Linkage elements with
sufficiently small size are used to model the structure of
the brittle material.

Two connecting bars are assumed to model the
behavior in the normal and tangential directions to the

interface which is perpendicular to the line connecting the
two nodes. Each connecting bar of a linkage element has
a cylindrical shape and length- equal to the distance
between the two nodes. It is modeled by independent
translational and rotational springs whose properties are
gradually reduced in order to model material degradation.
At each iteration the system is assumed to behave
elastically. The global element stiffness equation is
represented as follows: o
KU =F;U={UU}";, F={FF}"0
where K° is the global element secant stiffness matrix and
F° is the global element nodal forces corresponding to the
global element nodal displacements U°. Displacements
and forces at node i are represented by generalized
dlsplacement vector U' and force vector
= {uk,uy,u, 0%, 0%, 0, }" @
—{fX’fYafZ>mx:my:mz}T (3)
where u,, uy, u’, are the global displacement components,
i, e‘y , 0%, are the global rotation angles, ‘fx . fy , F, are
the resultant forces at node /, and m , my , m', are the
resultant moments. The relative normal and tangential
displacements and rotation angles can be expressed in
terms of displacements at nodes i and j:
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Fig.1 Linkage element model:
(2) translational springs, (b) rotational springs
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Ve=T(U-U") @

Vc = { vcn s Vctl b Vctz > mcn: O)Ctl » (Dctz }T (5)
where T® is a 6x6 ordinary three-dimensional coordinate
transformation matrix from the global coordinate system
X, ¥, Z to the local coordinate system n, t;, t,. The normal
and tangential force components and moments in the
local coordinate system are:

F= {Fn7tcﬂ’fci2:mﬂ:mﬂ:m12} ©)

The linkage element is characterized by the following
local force - relative displacement relationship:

F =Kk V° @)
k/ 0
k= 8
{ 0 k"’} ®
kf 0 o0 kKm0 0
k=0 k] O0[k"=|0 k7 0| ©®

0 0 Kk 0 0 k;

where k° represents the suffness of the material. k,f is for
the normal spring, k.’ k! are for the tangential springs,
k" is for the torsional spring, and ky™, ko™ are for other
rotational springs.

3. Material Modeling

3.1 Stress-Strain Relationship
The stress-strain relationship for a brittle material is

@ ®)
Fig.2 Schematic stress-strain diagram for
material of linkage element:

(a) normal direction, (b) tangential direction
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Fig.3 Reduction of compressive strength
as a function of lateral tensile strain

assumed linear elastic up to the peak. The maximum
stress failure criterion is used and it is examined
independently in normal and tangential directions. The
clement must be checked for the normal translation, two
tangential orthogonal translations and rotation around
each axis (accounting for torsional and flexural
components). Failure is assumed to be brittle in tension
and ductile in compression and shear. Figure 2 shows the
stress-strain diagrams in the normal and tangential
directions in order to model the behavior of a brittle
material such as concrete.

3.2 Failure Criteria

The gradual degradation model is assumed in shear
and compression by reducing the stiffness each time the
failure condition is satisfied at one linkage element layer.
Failure is determined by the maximum stress failure
criterion. A compressive strength reduction Iaw takes into
account the material strength degradation due to lateral
tensile strain, The lateral strain dependence of
compressive strength is shown in Fig.3. This reduction
law accounts for the effect of tensile cracking and
formation of continuous cracks in early stages.

3.3 Gradual Degradation Model

In compression and shear, the stepwise reduction of
the stiffness is employed each time the failure criterion is
satisfied. The reduction rate used in case of compression,
shear and tension failure are shown in Fig, 4.
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Fig.4 Reduction of element stiffness and area:
(a) compressive, (b) tensile, (c) shear stiffness
and (d) area

3.4 Linkage Element Model

The conmecting bar of the linkage element has a
cylindrical shape and is divided into concentric layers
with equal area. The stresses are determined at the most
external layer where stresses take the maximum value.
The layers account for the gradual degradation of the
sectional characteristics. The most external layer is
removed every time the failure criterion is satisfied but
the section remains circular. The connecting bar is
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assumed to fail when 60% of the layers failed. Figure 4
(d) shows the reduction of area of the element due to
failure of layers.

The initial cross-sectional area of the element is
determined at the start of the simulation, is a function of
its length and is assumed not to vary unless failure
occurs. The areas of the normal and tangential connecting
bars are considered independently and are equal for
elements of the same type. The area of each layer Al Al
is taken to be a fraction of the total area of each
connecting bar A, A,.

A
A= A==
"on t n,
where n, is the total number of layers.

The stiffness corresponding to the normal spring k.,
the tangential springs k", ko', the rotational springs ky™
and k", and the torsional spring k," are calculated as:

(10)

K/ =—E£—A-"— (11)
ki =k = GL'A‘ 12
km=kn = “’i’*[ n /\(13>
k) = ﬁ%:.le_ 14)

where E, and G, are the elastic modulus and shear rigidity
of each connecting bar, L, is the distance between nodes,
and o, B are nondimensional proportional constants.

The maximum stresses are determined independently
for the normal and tangential connecting bar of the
linkage element (see Fig. 5).

< 2 [+ 2
c, =_f_:_ " myR, " m;,R,
" A4, 1 1

s)

n n

2 2
oY L (£2)  miR
e A A, J

t t

(16)

where R,,, R, are the radii of eachkconnecting bar, 1, is the
moment of inertia and J, is the torsional constant of each

t2

Stress due to
axial force £%,

Stress due to
moment m°y

Stress due to
moment m°y

Fig.5 Layers and normal stress distribution
in the cross section of connecting bar

connecting bar.

4. Computational Algorithm

The analysis procedure is based on the secant analysis
method in order to obtain computational stability. It
consists in imposing unit displacements or forces and
determining nodal displacements from the equilibrium
equations. Taking into account the corresponding relative
displacements between nodes of each element, stresses
for all elements are determined.

Considering the ratio between stresses and strengths at
each element, the value of the force that determines
failure in only one element is obtained. After the
reduction of the corresponding element stiffness, the
computational procedure is continued until final failure.
At each step the displacements of nodes are determined
and the position of the nodes is updated. The flow of the
algorithm is shown in Fig.6.

The secant analysis method used in this study is a
simple and efficient computational procedure for a
monotonic proportional loading which is considered in
the following simulation example. From its inherent
nature, however, it is difficult to apply to the analysis of a
problem for a nonproportional or cyclic loading.

Determine position of nodes and
generate interfaces

v

Impose forces on rigid loading plates

v

Solve the equation system

v

Determine the ratio between stress
and strength for each element

v

Multiply stresses by the inverse of
maximum ratio to get failure in one
linkage element

v

Reduce the stiffness of the failed
element

v

Update position of nodes

v

Check if global failure occurred

— No
STOP

Fig.6 Flow of secant analysis method
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5. Simulation Results

A numerical simulation is made for the experimental
results by Van Mier” on. concrete subject to uniaxial
compression. The specimen wused in Van Mier’s
experiment is a cube (10x10x10cm) of concrete with
compressive strength "=45 N/mm’.

The mesh is chosen so that its global initial behavior
gives an isotropic elastic response in the global
coordinate directions (see Fig.7). The apparent Poisson’s
ratio is for this mesh 0.218. This value is close to the
typical value for concrete. It consists of nodes arranged
into nine planes parallel with the specimen sides. Nodes
located into the same plane are connected by horizontal
and vertical elements while nodes located in neighboring
planes are connected by diagonal elements. In Fig7
nodes located on the first and third planes are shown in
black while intermediate nodes on the second plane are
gray.

The present 3D mesh consists of 189 nodes and 956
elements arranged as in Fig.7. The length of vertical and
horizontal clements is 2.5cm while that of diagonal
clements is 2.165cm. Elements are distributed in the
horizontal and vertical axis directions (15.5% on each
direction) and in the diagonal direction (53.5%).

Loading element

Horizontal element
on 1* plane

Vertical element

on 1% plane

Diagonal element
between 1¥ plane
and 2™ plane

Loading plate

Horizontal element

on 2™ plane

Vertical element
on 2™ plane

Diagonal element
between 2™ plane
and 3 plane

®

Fig.7 Side view of the mesh used in simulation:
(a) linkage elements in the 1* plane of nodes ,
(b) linkage elements in the 2™ plane of nodes

The boundary conditions are given by using special
elements. The loading plates are represented by a plane of
nodes connected by elements with high rigidity in the
transverse direction. The role of the rigid loading plates is
to assure the correct loading conditions without additional
computational steps. In order to simulate boundary
conditions equivalent with the loading brushes used in the
experiment, normal elements connect the loading plate
with the specimen. The load is applied in the y-direction
by uniform load given on the upper loading plate.

The strength is assumed to be the same for all
elements. However, the strength of one element of a
specimen center is reduced so as cracking to start from a
known point and simulation to be reproducible.

In uniaxial compression, after the initial linear elastic
behavior, the stress-strain diagram (Fig.8) shows a
descending branch modeling the softening. The stress
increases gradually up to the peak (obtained after 150
iterations) and then gradually decreases. When a large
number of elements already failed the specimen crushes.
The stress-strain diagram on x and z directions are shown
in Fig. 9. In both x and z directions lateral expansion is
observed. Values of strain are slightly different due to
nonuniform cracking,

The volumetric expansion due to lateral expansion of
the specimen is observed before the peak. In the final
stage crushing of the specimen occurs because of the
rapid degradation of the stiffness. An increasing number
of elements in the mesh will generate a smoother diagram
and a slower rate of reduction of the stiffness.
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Fig.8 Stress-strain diagram in uniaxial compression
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Fig.9 Stress-strain diagram in lateral direction
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For this uniaxial compression loading of a cubic
concrete specimen the deformation and cracking of the
specimen are shown in Figs.10, 11, 12.

In Fig. 10 presented is the deformation of the specimen
in a central section parallel to xy plane. The
deformational behavior of the specimen can be followed
at each step. In Fig.10(a-c) the gray circles indicate the
initial position of the nodes, black circles indicate
displaced position of the nodes while the segments
linking the gray circles to the black circles indicate the
displacement vector. Displacements are represented by
multiplying by a scale factor. Shapes of the original and
deformed specimen are plotted with gray and black line
respectively. It is observed that the deformation increases

Average axial strain £,~0.172%

Average axial strain £,=0.196%

significantly after the peak especially in zones where
intense cracking process occurs.

The early crack pattern is shown in Figs.11(a) and
12(a). The black lines show failed interfaces due to
tension while the circles indicate the position of the
nodes. In step 75 which is on the ascending part of the
load-displacement curve all cracks are vertical due to
lateral tension. At the peak (step 150) most of the failures
are due to vertical elements but there are few diagonal
clements failed in tension. Later, tensile vertical and
diagonal cracks are propagating through the specimen as
seen in Figs.11(c) and 12(c) (step 350). In the final stage,
shear and compression failures occur leading to the
global failure of the specimen.

Average axial strain £,0.259%
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Fig.10 Deformation in a section in xy plane: (a) step 75, (b) step 150 and (c) step 350
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Fig.12 Cracking pattern in zx plane: (a) step 75, (b) step 150 and (c) step 350
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Figure 13 shows the distribution of crack and the
crack opening projected on the xy plane at steps 150 and
350. The width of the line showing a tensile crack is
proportional to the crack opening. It is observed that the
cracks are uniform and their width is small in early stage.
After 350 steps (see Fig.13 (b)) the cracks are wide
opened showing that the material is expanding laterally.

@ (®)

Fig.13 Opening of crack and crack distribution:

(a) step 150, (b) step 350

The damage of the material can be expressed by the
evolution of a damage indicator similar to the one
proposed by Abdeen et al.”’. The damage indicator D
shows crack development due to tensile failure of
horizontal, vertical and diagonal elements and is defined
in each direction as follows:

D= Z"A(j) 2A(k)

where A(j) stands for the area of element j. This damage
indicator gives the ratio between the failed element area
and the total clement area of the specimen. Nyg is the
number of elements failed in tension and Ng is the total
number of elements in the direction considered. The
values of D for linkage elements in each direction failed
in tension are shown in Fig.14.

In the early stage only vertical cracks develop and at
the peak the value of damage indicator for horizontal
element is 0.50. After the peak, some diagonal elements
failed and at step 350 the value of D for horizontal
directions reaches 0.79 while the value for diagonal
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Fig.14 Damage indicator for tensile failure of
each direction

direction is 0.15 indicating vertical and diagonal
cracking,

6. Conclusions

It is confirmed that the present 3D linkage element
model can be used in the failure simulation of a brittle
composite material such as concrete. By the present
method it is possible to follow the degradation of material
and the deformation. Obtained stress-strain diagrams
show satisfactory agreement with experimental data. The
same mesh can be tested in biaxial and triaxial
compression tests under small lateral confinement stress.
The model is used to estimate the internal failure
mechanism. By including the reinforcement effect, it can
be extended to the modeling of structural elements. The
major findings are as follows.

1) The overall deformational behavior of a brittle
material can be followed in a general stress state.

2) The degradation of the material is observed and can
be quantified. The cracking development and the
crack opening are obtained for all stages until the
final failure occurs.

3) Phenomena such as strain-softening and volumetric
expansion are simulated with the present model.

Appendix; Constants Used in Simulation

Elasticity modulus E,=32500 N/mm’
Shear modulus G=13500 N/mm®
Compressive strength o%=45.0N/mm’
Tensile strength o'=4.5 N/mm*
Shear strength o°=4.5 N/mm’

Normal area of diagonal elements

A=14 mm®

Tangential area of diagonal elements A=1.2 mm?

Number of layers

Il1=5

Area of diagonal elem. / Area of normal elem. = 2
Proportional constants: o=4(Ly/Ra)%; p=2(L/Ry)*
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