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An analytical approach for buffeting response of long-span bridges using complex modes is
presented. The approach can be performed in either frequency or time domain. The calculating
scheme is based on the direct complex modal analysis of the three-dimensional model of long-
span bridges in the presence of aeroelastic phenomena. By using complex modes, the actual
modal characteristics integrating with aeroelastic effects can be effectively obtained at each
mean wind speed. Coupled responses are therefore accurately captured. A numerical example
is made for Akashi-Kaikyo Bridge. By the present method and using the turbulence generated
in wind tunnel for the full-model experiment of the bridge as input, the calculated results
agree very well with the experimental ones. Some effects by the uses of spatial coherence,
turbulent spectra on the buffeting response are then addressed.
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1. Introduction

The development of construction materials and
technology has made the recent trend in the design of
cable-supported bridges toward longer and lighter,
which result in very flexible and very low-damped
structural systems. Such bridges are therefore very
susceptible to, and, as a consequence, exhibit very
complicated responses under wind action. The most
typical case is Akashi Kaikyo Bridge, which will be the
longest bridge of the world with a main span of 1990m.
The full-model of this bridge in wind tunnel exhibited
a strongly coupled three-dimensional vibration under
gusty wind. Prediction of such buffeting response
therefore emerges as the major serviceability
consideration in the design of long-span bridges.

Many methods for predicting buffeting response of
long-span bridges have been proposed in both frequency
and time domains. The most traditional one is the
Admittance Single Mode method by Davenport (1962),
which was exclusively based on quasi-static assumption
for the formulation of aerodynamic forces. Simiu and
Scalan10) (1986) have further developed another Single
Mode method in the presence of aeroelastic phenomena.
Despite their simplicity, these methods are inapplicable
for modern long-span bridges in the viewpoint of
analyzing coupled responses. Recently, the rapid
development of computer technology has urged many
attempts to solve the problem in time domain by many
approaches. Relative Velocity by Miyata, et al.”) (1995)
and Rational Functions by Boonyapinyo, et al.11) (1997)
are typical among others. Jain, et al.3) (1996) also
proposed a Multi-Mode method in frequency domain.
These methods permit to take into account the
aerodynamic and structural couplings into the analysis.
Coupled responses thus can be obtained.

However, almost all of these methods, as long as
following the modal analysis approach, have based on
the assumption that the modal characteristics do not
vary with the change of wind speed. The mechanical
eigenvectors (or mode shapes) of the system at zero
wind speed condition thus have been widely used for the
modal decomposition. This assumption, however, does
not hold true for very long-span bridges. The measured
buffeting responses of the full model test of Akashi
Kaikyo Bridge have indicated a considerable evolution
of the modal characteristics of the system due to the
change of wind speed. This evolution has been
successfully traced out by the Mode Tracing Method
proposed by Dung, et al.l) (1996) for flutter prediction.
In this study, an approach for buffeting analysis of
long-span bridges via this method is presented. Direct
complex modal analysis for 3-dimensional model of
bridges is performed with the integration of aeroelastic
effects. The actual modal dynamic behaviors at a certain
wind speed can be accurately obtained and used for the
modal decomposition. Coupled responses are therefore
accurately analyzed. The method can be developed in
both frequency and time domains.

Numerical example is made for Akashi-Kaikyo
Bridge. There so far have been many analytical works
attempting to predict the bridge's buffeting response.
However, whereas the torsional and vertical responses
were predicted fairly well, the horizontal response was
greatly overestimated when compared to those of the
experiment. By employing the present method and using
the wind turbulence generated in wind tunnel for the
bridge's full-model test as input, very good agreements
between analytical and experimental results are
obtained. The accuracy of the approach is therefore
effectively proved. Effects of some characteristics of
turbulence input to the response are clearly addressed.
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2. Frequency Domain Formulation

2.1 Complex Modal Analysis

The equation of motion of a full-model bridge in the
presence of aeroelastic phenomena can be expressed as,

Mi+Cu+Ku=F, +F, ()

where M, K are mass and stiffness matrices formed by
Finite Element method, u is displacement vector, Fage is
motion-dependent self-excited force depending on
reduced frequency K=wB/U (0 is circular frequency
and U is mean wind speed), and Fy, is buffeting force.
Other notations are depicted in Fig.1. Assume harmonic
oscillation, Fae can be expressed as follows,

Lae 5;
Fac={ D, =-mpB’F,{ 7 t=—mpB'F i (2)
M, /B OB
where
Lyg +iLy; Lp+ily;  Lyp+ily
F,=| Dyg+iDyy D+ iD,;  Dygp+iDy; 3)

Myp+iMy Mg +iMy  Myg +iMy,
in which Lge, Dge, Mge are acroelastic lift, drag and
moment respectively; p is air density; Fy, contains a
full set of 9-complex unsteady coefficients (or
equivalently 18 flutter derivatives), which exclusively
depend on reduced frequency K. Integrate Fae to the
left-hand side as an additional complex mass and
neglect damping, Eq.(1) can be rewritten as

Mpu+Ku=F, ' 4)
w(t)
- t. “
U u(t)

Fig.1: Sectional model of bridge deck

In M, the self-excited force is integrated. Therefore
Mg is a complex function of reduced frequency K,
whereas the buffeting force Fp is a function of time.
This coniradiction make Eq.(4) impossible to be solved
by a normal direct reduction to the modal space.
Different frequencies of multi-mode system indicate
that at a certain wind speed, each mode of structure has
different reduced frequency. If following the technique
of the Direct FEM Flutter Analysis®), one can make the
complex eigen-analysis for Eq.(4), which yields a set of
modes with the same K, but at different mean wind
speeds. This result is inapplicable in this case since the
buffeting analysis needs a set of modes at a certain mean
wind speed. In this sense, also based on this
formulation, the Mode Tracing Method!) provides an

alternative. This method targets one mode at a time, and
then step by step increases the mean wind speed to find
the complex eigen-value by an iterative method. The
eigen-values of many modes therefore can be determined
and collected at any prefixed wind speed. The modal
decomposition for Eq.(4) at a certain wind speed then
can be performed by using corresponding eigenvectors.
Since Mg is complex and not symmetric, two
biorthogonal sets of complex eigenvectors, left vy, and
right vg, exist for the modal decomposition. The left
eigenvectors decide the contribution of external forces
to each mode, whereas the rights express the mode
shapes. The uncoupled equation of motion in generalized
coordinate r, where u=vgr, can be written as,

T .. T
(vL.MF.vR)r+(vE.KvR)r=vL.Fb 5)

However, this equation is in complex form, which
makes it difficult to be solved. The more convenient and
explicit form is,

7 + 28,07, + ofr = Qy; (6)

where Qpi=Fp; / mj; Fp; and m; are modal buffeting
force and modal mass. The modal aerodynamic damping
ratio &; and modal frequency ®; here are real values as

‘follows,

T A W (T PR

in which A; =Ag;+id; = square root of the

corresponding complex eigenvalue, i=+-1; & is
modal structural damping ratio. Taking the Fourier
transform of Eq.(6) into the reduced frequency K
domain, the equation of motion can be expressed as,

Er=Q, (8)

where the overbar denotes the Fourier transform.
Apparently, the impedance matrix E here is completely
diagonal. The general term is

E; =—K? +i(28,K;)K + K} (9)

in which, K;=w;B/U, and the aeroelastic effects
determined by the unsteady coefficients (or flutter
derivatives) has been integrated into mode shapes and
other modal characteristics by direct complex eigen
analysis via Mode Tracing method!). This is remarkably
different from Multi-Mode approach?), where E has
off-diagonal terms determined by flutter derivatives.
Therefore, compared to other method, the modal
characteristics of the present study are more refined
since they are accurately determined at each mean wind
speed. This is also the important advantage of the
present method. Actual mode shapes and other modal
properties at a mean wind speed are accurately known in
prior, so that it is very easy-to make judgments and
select significant modes to include into the analysis.
The coupled response also can be accurately captured and
clearly explained by the complex mode shapes.
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2.2 Buffeting Force

By quasi-steady assumption, the buffeting force Fy,
can be computed through a set of static coefficients
from horizontal (u) and vertical (w) gust velocity
components as follows

2¢; (cp+Cp)

L, UB
! t
Fb: Db = p ZCD CD u( ) (10)
2 ’ w(t)
M,/B 2€y  Cy

Oy

where Ly, Dp, M}, are buffeting lift, drag and moment,
respectively. Cy, Cp, Cy are static coefficients for
lift, drag and moment, respectively. The prime (')
denotes their derivatives with respect to the angle of
attack of the mean wind speed on the section model
(Fig.1). Values of these coefficients at the mean angle
of attack 0y are defined to be used.

The RMS of buffeting response can be obtained in
term of power spectral density by solving Eq.(8) using
standard random vibration analysis for MDOF system.
A ready-developed form of this procedure convenient
for bridge analysis can be found in the paper of Jain et
al.3) (1996). In this study, Egs.(11) to (18) are
employed from this procedure with an important
revision that the left and right eigenvectors are
appropriately used in each stage for consistency with
the complex modal analysis. The general term of the
power spectral density (PSD) matrix of buffeting force
can be written as,

pB3 2 1 LL
S * = _fj\l’(xA’

0,0 \ 2U ) mm; o,
where

\P(XA' xB, K)={qi(xA)ijj(xB)Suu(xA,xB, K)
+§-(xA)§j(xB)Sww(xA,xB, K)

[ql X4 J(xB)+s (xA)qJ Xg ]Cuw xA,xB,K)

xg, K)dx ydxp (11)

+l[q~i(xA §](xB)—§i(xA)cij xB ]Quw(xA, xB, K)}(lz)
L is bridge's length; x4, xg are span locations; Sy, Syww,
Syuw are respectively uu-cross-spectrum, ww-cross-
spectrum and uw-cross-spectrum between 2 points x4
and xg; Syw=Cyw+iQuw: with Cyyy being cospectrum
and Qy,, being quadrature spectrum; and

Gi(x) =2[Cpyp;(x)+ Cpzp;(x) + Cprop;(x))] (13)
§;(x)= (CL + CD)ij(x) +Cpzrj(x)+ Cpogj(x) (14)

in which yj;(x), zy;(x) and oz;(x) are respectively the
vertical, horizontal and torsional components of the
corresponding left eigenvector at span location x; Cy,
Cp, Cy are static coefficients for lift, drag and
moment respectively. The prime (") denotes their
derivatives with respect to the angle of attack. The PSD
matrix for the generalized coordinate r is,

5,.(K)=E-'50,0 [E" as)

Then, the PSD for physical displacements at x are
S,y (% K) = ZZyR, (x)yg; (1S, (K) (16)
Sy (x K)= EZZR, (x)2g; (%)S,,, (K) an

Seee (% K) = ZZB.Z“Ri(x)aRj (x)sr‘.rj (K) 18

i

where i and j are number of modes. ygi(x), zgi(x) and
O.gi(x) are respectively the vertical, horizontal and
torsional components of the corresponding right
eigenvector at span location x. The mean-square values
of buffeting response then can be evaluated by taking
the integration of the respective physical displacement
PSD with respect to frequency f=KU/27B from O to oo,

According to the theory of extreme statistics!?), the
expected values of the maximum vibrational response
occurring in the time interval T is

Pmax (%) =k, (x)0 (%) (19)
where p stands for y, z or o displacement component;

Op is the root-mean-square of p-component response; kp
is the respective peak factor, which can be estimated as

0.577
k,(x)=[21 W2
5(x) =[21nv(x)T] T @0
in which
172
sz S,p(%f)df
V(x) =] de——— (1)

(I)S p( % f)df

Spp(x.f) is calculated from Egs (16), (17), (18) with K
replaced by real frequency f. Although Spp, is mostly
narrow-banded, the estimation of the zero-upcrossing
frequency V(x) by using Spp as a 'weighted function’ as
in Eq(21) is necessary due to the existence of multi-
mode and coupled responses.

In the above buffeting force formulation, there are
two assumptions. First, the so-called aerodynamic
admittance functions are assumed to be 1. These
frequency dependent functions account for the
imperfect correlation of wind pressure around the
deck's section, and would approach unit at low
frequency range as suggested by Davenport's and Sears'
functions?). Second, the spatial coherence functions of
respective components of buffeting forces along the
bridge deck are assumed to be identical to those of the
undisturbed turbulence velocity components of wind
field. These assumptions are justifiable due to the fact
that frequencies of the significant modes of a very long-
span bridge are usually very small. Evidence for this
fact can be seen for Akashi-Kaikyo Bridge later.
Anyway, the present approach is ready for incorporating
these aspects if the information is available.
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In Eq.(10), the steady part of buffeting force due to
mean wind speed is excluded, and therefore only
dynamic response due to fluctuating part (zero mean)
are the values of interest. This is a fair simplification.
The present method is for linear system. Excluding the
mean wind-induced response, the dynamic response is
small enough for the linear analysis scheme to be valid.
On the contrary, the static displacements due to the
steady force of a long-span bridge are known to be very
large®. For this, a non-linear analysis scheme would be
needed to include the geometric nonlinearity of
structures. This non-linear effects may considerably
alter the stiffness of structure at the static-
displacement position, and hence inversely affect the
buffeting and flutter response as well. A treatment for
this problem was reported in Dung et al.2),

3. Tirhe-Domain Formulation

The formulation in time domain is similar to that in
frequency domain until Eq.(7). The buffeting force is
calculated directly from the time-histories of gust
velocity components u(t) and w(t) by quasi-steady
assumption in Eq.(10). The buffeting analysis is then
carried out by direct integration method for Eq.(6).
Time-histories of displacement responses, including
vertical, horizontal and torsional components, can be
obtained at any nodal point on the bridge deck. The RMS
and ensemble average of maximum amplitude of the
responses then can be evaluated from the time-histories.

The context of the approach thus involves the work
of numerical simulation of wind turbulence u(t) and
w(t). Details of this work can be found in Minh et al.>.
For the context, hereafter are some brief descriptions.

The numerical simulation of wind turbulence is
made by Auto Regressive-Moving Average (ARMA)
method. The generating algorithm of this method
developed by Samaras et al.? for a multi-variate random
stationary process is used. The two velocity components
of wind turbulence, along-wind () and vertical (w), are
generated simultaneously and spatially, so that the
spatial correlation between these components can be
fully taken into account.

The target input of the simulation is the spatial
correlation function matrix. The elements of this
matrix are created by inverse Fourier transform of the
respective cross-spectra, which is estimated from the
knowledge of the auto-spectra, point cross-spectrum
and spatial coherence functions of wind turbulence.

Various checks on the simulated results show that
the simulation can be effectively performed at very
small values of time step with very good accuracy. The
validity of the simulation is therefore improved and
reliable for an analysis in time domain.

4. Numerical Example - Akashi-Kaikyo
Bridge ,

Akashi-Kaikyo bridge, which will be the longest
bridge in the world after completed in 1998, consists of
a main span of 1990 m and two side spans of 960 m each.
Buffeting response of the bridge has been obtained
experimentally by a full model test in wind tunnel®.
In this study, the buffeting analysis for the bridge is

performed by the presented approach in both frequency
and time domains. However, the results by frequency
domain will be mainly presented. The results by time
domain will be used for a comparison.

4.1 Turbulence characteristics

As previously presented, both calculated schemes in
frequency or time domain need auto-spectra, point
cospectrum, point quadrature-spectrum and spatial
coherence functions of the turbulence velocity
components as input. The spatial cross-spectrum is then
evaluated by simply multiplying the auto-spectra (or
point cospectrum) with the corresponding square-root
of coherence functions. The quadrature spectrum is
neglected in this study because its information is not
available, and it appears to be very small however.

Since the buffeting response of the full model of
Akashi-Kaikyo Bridge was obtained under the action of
the turbulent flow generated in wind tunnel, the
analytical results may better agree with the
experimental results if the wind-tunnel turbulence
characteristics are used as input. To check this idea, a
comparative analysis is made here. Two cases of
turbulence, named (a) and (b), are used for the buffeting
calculation of the bridge. Case (a) is the turbulence
with characteristics proposed from literature (hereafter
called 'literature turbulence'), and case (b) is the
turbulence generated in wind tunnel for the full-model
test (hereafter called 'wind-tunnel turbulence").

(a) Characteristics of Literature Turbulence

After Kaimal et al.9), the Auto-spectra Sy, Sy, and
the Cospectrum Coyy of natural turbulence can be
expressed as,

£ S(f)_ 1055, fS.(f)__ 2,
w¥  1+33£,0°7 5 w¥ 1453£53;
f Cou,(f) ___ -l4f,
u?  (1+9.6f, )% (22)

where f is frequency, fr is reduced frequency, u* is
friction velocity. The conventional coherence function
of the same velocity component at two points
P1(xz,y7) and P3(x2,y2) is given by Davenport 10,

~

JCon(f)=e~f

2 2.2 2
. =52+ Cy -3
where f= x 12 y 7Y
0. 5(Uy1 + Uyz)
in which, C, =10; Cy=16

For the coherence function of u# and w at different
points, there is no information in literature.

(23)

(b) Characteristics of Wind Tunnel Turbulence

The time-history records of the horizontal velocity
u(t) and vertical velocity w(z) of the wind-tunnel
turbulence at 6 points along the bridge deck of the full-
model test are analyzed to extract its statistical
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characteristics. After scaled by the similarity rule, the
scaled spectra and point cospectrum of the turbulence
can be expressed as,

S.f)__ 87 So(f) _ 111
2 (d+128P7 2 1+8.97f75
Coyy(f) __—2.56

;5 (14517 (24)

2,
where # is mean square of gust component u. The
coherence functions can be expressed in our proposed
forms as follows,

COhuAuB (f)= Cg (dx)exp(—-f C}'dx/U) v (25)
COthwB (f)= Cb” (dx)exp(—f C;vdx/U) (26)

Coh, ., (£)=0.5 [Coh, y, (f)+Coh, , ( A e

where C, =12, C; =8,

C%(dx) = (1-0.001dx — 0.0003dx” )

(28)
Cy) (dx) = (1-0.03dx +0.0002dx")

4.2 Buffeting Responses and Discussions

The finite element 3-D frame model of the bridge
(Fig.2) is used for the numerical example of the present
method. The buffeting response is calculated at six
levels of mean wind speed: U=30, 40, 50, 60, 70, 80 m/s.
Turbulence intensity [,,=9.6%, I,y,=6%. The sets of
flutter derivatives and static coefficients of the bridge
at zero angle of attackl?) are used. Modal structural
damping logarithmic decrements are approximately
0.03. Number of modes to be used is 32. This is a
primary choice to inciude the 3rd modes of all
components for a preliminary conservative analysis. The
results of the investigation will show later that only
very few modes actually involve in the response.

For the analysis in frequency domain, the frequency
step to be used is Af=0.001 Hz, which is fine enough to
well tuned to the modal frequencies to obtain good
results. For the analysis in time domain, the time step
for the turbulence simulation and the Newmark P direct
integration is 0.1 second. Duration to obtain response is
150 minutes. This duration is equivalent to the 15-
minute response of the full model test, for which the
experimental results are available for comparison.

(a) Comparative check of turbulence input

Results of the comparative analysis between Case (a)
‘Literature turbulence’ and Case (b) "Wind-tunnel
turbulence' are shown in Fig.3. The analytical torsional
and vertical RMS responses agree very well with the
experimental results in both cases of turbulence. The
horizontal RMS response, which is highly
overestimated for case (a), is greatly smaller and thus
very well agrees with experimental result in case (b).
Similar results are also obtained for the maximum
vibrational amplitude.

A closer look into the dynamic behaviors of the
bridge reveals that the horizontal response is governed

mainly by the 1st symmetric horizontal mode, which
has a very low frequency of around 0.038 Hz. At this
frequency, the Davenport's coherence function gives
very high coherence of u(t) along the bridge deck, but the
wind-tunnel turbulence has much smaller values of the
coherence for a well-separate distance as dx=50m in
Fig.5. Sensitive checks point out that this is the main
cause of the overestimation for horizontal response
when using literature turbulence as input. Moreover,
higher values of §; spectrum of literature turbulence
than those of wind-tunnel turbulence at low-frequency
range as seen in Fig.6 contribute some more errors to a
smaller extent. These interesting results prove the
correctness of the idea of using the wind-tunnel
turbulence as input for a better match with the
condition in wind tunnel, and also effectively prove the
accuracy of the present approach.

(b) Comparison of frequency and time domain

Fig. 4 shows the comparison of RMS and maximum
vibrational amplitude between the experimental and
analytical results in both frequency and time domains.
Very good agreements between them for all three
displacement components confirm the stability of the
formulation. An extra conclusion from this comparison
is that the simulated turbulence® has good validity and
is reliable for dynamic analysis in time domain.

Concerning the computational efforts, the frequency
domain approach is very sensitive to the number of
modes to be used. When the number of modes increases
in linear order, the time consumption for the frequency
domain increases almost in quadratic order due to the
cross-modal calculation by matrix multiplication. On
the contrary, the direct integration for the time domain
very quickly solves the problem with the time
consumption also linearly increasing. The time domain
spends most of its computational time for generating
the turbulent velocity components at a number of nodal
points to apply the buffeting forces. However, which
approach would be more computational efficient is not
conclusive here since there are many other factors to

_consider for such a comparison. Anyway, for

information, with the input data described in this
numerical example, the frequency domain is twice
faster than the time domain to solve Eq.(6). For a level
of wind speed, time consumption of the frequency and
time domains are respectively around 13 and 25 minutes
on a Hewlett Packard Workstation HP 9000/700. Note
that the time for modal decomposition, which is the
same for both domains, is not included.

However, concerning the contains of the results, the
results from the time domain are more informative than
those of the frequency domain. The time domain results
give the time-histories of responses, which are useful
for the representation of instant response at any time,
and for graphically visualized simulation of the
response. These practices have emerged to be important
and necessary for better understanding the dynamic
behaviors of such a long-span bridge.

(c) Representation of coupled responses

A more detailed dynamic behaviors of the bridge can
be observed by Figs.7 and 8, in which the evidences of
coupled motions in the response can be seen clearly.
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Fig.2: Three-dimensional model of Akashi Kaikyo Bridge in wind field
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Fig. 3: Comparative check for different cases of turbulence input (by frequency domain)
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Fig. 4: Comparison of experimental and analytical results in frequency and time domain
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Fig.7 shows the evolution of mode #10 at U=0, 30, 50
and 70 m/s. As the mean wind speed increases, notable
coming into existence and development of the vertical
component in the complex mode shape are observed,
making the response more and more 3-dimensionally
coupling at this modal frequency. This coupled motions
obviously does not exist in the mechanical mode shape
(at U=0). The modal frequency also gradually decreases
from f=0.147Hz to f=0.138Hz. The mode shape at high
wind speeds thus exhibits strongly aeroelastic
couplings between all three vibrational components.
Another visualized evidence of the coupled response at
high wind speeds can be seen by the response spectra of
the middle of the main span at U=70 m/s as shown in
Fig.8. Though each displacement component is mainly
dominated by its own significant mode, all of them also
have peaks of almost the same order of magnitude at
mode #10 (f=0.138 Hz) (note that the peak of
horizontal component appears small in the figure due to
vertical scaling). Therefore, at high wind speeds, the
buffeting response exhibits strongly 3-dimensional
aeroelastic coupled motion at this frequency, which can
be effectively analyzed by using complex mode shapes.
The structural couplings between modes in the response
are also clearly obtained. This mode #10 actually
develops to flutter instability at higher wind speeds.

(d) Some other results and checks

From Fig.8, it can be seen that the estimation of the
zero-upcrossing frequency v(x) by Eq. (21) is necessary,
especially for vertical displacement due to the multi-
mode contribution. However, for the other components,
the modal frequency of mode #1 (for horizontal) and
mode #10 (for torsional) can be used instead.

Fig.9 shows the RMSs of response along the bridge's
deck at U=30, 50, 70 m/s. The shape of these along-deck
RMSs at U=70 m/s reflects very well the dynamic
behavior of the bridge at this wind speed, where mode
#10 becomes the dominant mode of the total response.

A check on significant modes indicates that the
responses at the midspan of the main span are mainly
contributed by only 5 modes: #1 (1st horizontal), #2
(1st vertical), #8 (3rd vertical), #9 and #10 (3-
component coupling modes of 1st torsional, 3rd
vertical and 3rd horizontal). The results by these modes
are less-than-2% smaller than the results by 32 modes.
Note that the frequencies of these modes are all very
low at less than 0.15 Hz, so that the assumptions for
buffeting forces' formulation can be justifiable.

The effects of the uw-correlation on the buffeting
response have been a question in literature. In this study,
the effects of this correlation on the response at the
midspan are checked. When the correlation is excluded,
the vertical response is overestimated around 10%, the
torsional response is underestimated around 7%, and the
horizontal response negligibly changes, compared with
the results when the correlation is included. These
results are in accordance with the negativeness of the
correlation and the coupled behaviors of the response.

5. Conclusions

The presented buffeting calculation scheme has been
proved to be very effective and practical. Since the

modal characteristics are accurately obtained at each
mean wind speed, the aeroelastic effects can be
comprehensively incorporated. The: process of modal
decomposition then becomes very straight forward.
This makes the present method easy to develop in both
frequency and time domains. By using complex mode
shapes, coupled responses are accurately captured and
clearly interpreted. The numerical example for Akashi-
Kaikyo bridge results in some interesting findings,
from which the roles of the turbulence input, especially
the spatial coherence functions can be pointed out. The
presented buffeting schemes here together with the
Mode Tracing method!) for flutter analysis indeed
effectively provide a consistent treatment for
aerodynamic problem of long-span bridges, expectedly
even in case of a longer span being encountered.
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